
Session 2: Types

COMP2221: Functional programming

Laura Morgenstern*

*laura.morgenstern@durham.ac.uk

COMP2221—Session 2: Types 1

Recap

• What are some differences between functional and imperative

programming?

• Which programming model more closely mirrors the way computers

execute?

• What are interpreters and compilers? (in very broad terms)

• What are side effects?

• Why can side effects easily introduce bugs?

• What is Haskell’s syntax for identifier definition, function application

and composition?

• Which list operations does the Prelude provide?

COMP2221—Session 2: Types 2

Definition: What are types?

Definition (Type)

A type is a collection of related values.

A type can be described by specifying

• the set of data elements it covers and

• the operations it supports.

Example

• Bool the two logical values True and False.

• Integer -> Integer the set of all functions that take an Integer

as input and produce an Integer as output.

COMP2221—Session 2: Types 3

Motivation: Why do we need types?

Example in C/Java

int a = 4; double a = 4;

int b = 3; double b = 3;

double c = a/b; double c = a/b;

Result depends on input types.

Since computers represent everything as sequences of bits, types are

also required to interpret these bit patterns.

COMP2221—Session 2: Types 4

Motivation: Why do we need types?

Example in C/Java

int a = 4; double a = 4;

int b = 3; double b = 3;

double c = a/b; double c = a/b;

Result depends on input types.

Since computers represent everything as sequences of bits, types are

also required to interpret these bit patterns.

COMP2221—Session 2: Types 4

Motivation: Why do we need types?

• Mathematics and programming rely on the notion of types

• Tell us how to interpret a variable

• Provide restrictions on valid operations

• Are required to know what a bit pattern means

Implementation

Find the correct implementation of an operator.

Correctness

Check whether an operation on some data is valid and/or well-defined.

Check whether a code fragment is correct (type safety).

Documentation

Document the code’s semantics for the reader.

COMP2221—Session 2: Types 5

Type System Classification

• Strongly vs. weakly typed languages

• Statically vs. dynamically typed languages

COMP2221—Session 2: Types 6

Static type checking

Translators must check for type correctness

Definition (Statically typed language)

Type safety is checked at translation time.

⇒ invalid types result in translation error

-- Invalid

foo :: a -> Int

foo f = 1 + f

COMP2221—Session 2: Types 7

Dynamic type checking

Definition (Dynamically typed language)

Type safety is checked at run time.

⇒ invalid types only detected as soon as used

Fine as long as f supports addition with a number

def foo(f):

return 1 + f

COMP2221—Session 2: Types 8

Type checking

• How does the translator determine the type of an expression?

Explicit annotation

Programmer annotates all variables with type information (e.g. C/Java)

Type inference

Translator infers the types of variables based on the operations used

(e.g. Haskell)

Duck typing

Translator/runtime just tries the operation, if it succeeds, that was a

valid type! (Python)

COMP2221—Session 2: Types 9

Types in Haskell

Haskell is

Strongly, statically typed.

⇒ every well-formed expression has exactly one type, these types are

known at compile time

COMP2221—Session 2: Types 10

Notation and inspection

Attaching types

Haskell’s notation for “e is of type T” is spelt

e :: T

-- False is of type Bool

False :: Bool

-- not is of type Bool -> Bool

not :: Bool -> Bool

What type does X have?

Every valid expression in Haskell must have a valid type.

You can ask GHCi what the type of an expression is with the command

:type expr

Prelude> :type sum

sum :: Num a => [a] -> a

COMP2221—Session 2: Types 11

Demo time
Let’s look at some types

COMP2221—Session 2: Types 12

Functions have types

• Functions have types in all programming languages, Haskell makes

this particularly explicit

Functions of one argument “unary”

Map from one type to another

not :: Bool -> Bool

and :: [Bool] -> Bool

Functions of two arguments “binary”

Map from two types to another

add :: (Int, Int) -> Int

“add eats two Ints and returns an Int”

COMP2221—Session 2: Types 13

Summary

• Content

• Defined and motivated types

• Different concepts of typing (dynamic/static)

• Considered basic Haskell types

• Looked at list and tuple types

• Determined type of expressions with GHCi

• Considered types of functions

• Self-study

• Tackle exercise “Types and Lists”

COMP2221—Session 2: Types 14

