AR
P Durham

University

Session 10: Summary

COMP2221: Functional programming

Laura Morgenstern

laura.morgenstern@durham.ac.uk

COMP2221—Session 10: Summary

Saw implementation of foldr and foldl

Introduced and used type class Foldable to capture computational
pattern reduction

Introduced syntax of A-calculus

e Saw how abstraction, application and reduction work in A-calculus

COMP2221—Session 10: Summary 2

Revision: evaluation of foldr and foldl

e foldr and foldl are recursive

e However, often easier to think of them non-recursively

foldr
Replace (:) by the given function, and [1 by given value.

sum [1, 2, 3]

= foldr (+) 0 [1, 2, 3]
foldr (+) 0 (1:(2:(3:[1)))
1+ 2+ (3+0)

=6

foldl
Same idea, but associating to the left

sum [1, 2, 3]

= foldl (+) 0 [1, 2, 3]
foldl (+) 0 (1:(2:(3:[1)))
(0 +1) +2) +3

=6

COMP2221—Session 10: Summary 3

Summary

Content overview

e Intro to functional programming paradigm

e Types I: built-in types, type checking

e Functions |: currying and A\-expressions

e Lists: pattern matching, comprehensions

e Types Il: polymorphism, algebraic data types, type classes
e Recursion: structure, classification, and complexity

e Functions Il: higher-order functions

e Evaluation strategies: lazy vs. eager

e)-calculus: syntax and reduction rules

COMP2221—Session 10: Summary 4

Functional programming paradigm

e A programming paradigm where the building block of computation
is the application of functions to arguments.

e Functional programs specify a data-flow to describe what
computations should proceed

e Algebraic programming style dominated by function application and
composition

= a functional language is one that supports and encourages
programming in this style.

COMP2221—Session 10: Summary 5

Type: collection of values
Haskell built-in types
e Int, Integer, Char, String, ...
o Lists [1,2,3]

e Tuples (1,2,3)

Haskell custom data types
e type keyword for synonyms

e data keyword for new algebraic types

COMP2221—Session 10: Summary 6

Polymorphism

e Polymorphism: functions that are defined generically for many types.
e Types of polymorphism: parametric, ad-hoc, subtype polymorphism
e Type variables: length :: [a] -> Int “a" is a type variable, length
is generic over the type of the list.
e Haskell uses parametric polymorphism “generic functions”
e Constraining polymorphic functions: type classes
® (+) :: Num a => a -> a -> a "+ works on any type a as long as
that type is numeric”
e Relevant type classes: Num “numeric”’, Eq “equality”, 0rd “ordered”
= Include class constraints in type definitions when appropriate

COMP2221—Session 10: Summary 7

e Pattern matching: can match literal values but also match a list
pattern, and bind the values

sumTwo :: Num a => [a] -> a
sumTwo (x:y:_) = x + y

e List comprehensions: constrcut new lists based on generator and
guard expressions

[x| x <- [1..5], even x]

COMP2221—Session 10: Summary

Recursion

Recursion: a function that calls itself until it reaches a base case.

Definition (Tail recursion)
A function is tail recursive if the last result of a recursive call is the
result of the function itself.

Definition (Linear recursion)
The recursive call contains only a single self reference.

Definition (Multiple recursion)
The recursive call contains multiple self references.

Definition (Direct recursion)

The function calls itself recursively.

Definition (Mutual/indirect recursion)
Multiple functions call each other recursively.

COMP2221—Session 10: Summary 9

Functions

e Saw nameless or anonymous functions (A-expressions), and syntax
e Formalises idea of functions defined using currying

add x y =x +y

-— Equivalently

add = \x > (\y > x + y)

Definition (Higher order function)
A function that does at least one of

o take one or more functions as arguments

e returns a function as its result

e Due to currying, every function of more than one argument is
higher-order in Haskell

COMP2221—Session 10: Summary 10

Generalizing computational patterns

e Saw Functor for mappable types and Foldable for foldable types

e Instances must obey some equational laws

Functor laws
“Mapping behaves as expected”

-- Distributes over composition

fmap (f . g) xs == fmap f (fmap g xs)
-- Preserves tidentity

fmap id xs == id xs

COMP2221—Session 10: Summary 11

Evaluation strategies

e Lazy evaluation
e Infinite data structures are fine, as long as we don't try and look at
all of them
e Call by name (lazy) vs. call by value (eager) — contrast with
imperative languages
e Think about expression as a graph of computations: multiple
different evaluation orders possible

COMP2221—Session 10: Summary 12

A-calculus

e JA-calculus: set of rules to transform expressions of the following
form

v (Variables; lower case letters)

(MN) (Application of M to N)

(Av.M) (Abstraction aka function with parameter v and body M)
e with M and N being expressions of the same form

e qa-conversion: solving name conflicts by renaming variables

e [-reduction: reducing expressions by applying functions to
arguments

COMP2221—Session 10: Summary 13

Summer exam

e Open book, tests mainly comprehension, application and synthesis
e Format: coding-based + conceptual questions
= Practice programming in Haskell

= Think about functional paradigms, look for them elsewhere. Has
your mindset changed?

COMP2221—Session 10: Summary 14

Relevant past paper questions

2022 Q1 (not (d)) and Q2

2021 Q1 (not (e))

2020 Q1 and Q2

2019 Q2 (the only Haskell question)
2018 Q1 (b-e, g) (not (a), (f))

COMP2221—Session 10: Summary 15

Thank you!

	Summary

