
Session 10: Summary

COMP2221: Functional programming

Laura Morgenstern

laura.morgenstern@durham.ac.uk

COMP2221—Session 10: Summary 1

Recap

• Saw implementation of foldr and foldl

• Introduced and used type class Foldable to capture computational

pattern reduction

• Introduced syntax of λ-calculus

• Saw how abstraction, application and reduction work in λ-calculus

COMP2221—Session 10: Summary 2

Revision: evaluation of foldr and foldl

• foldr and foldl are recursive

• However, often easier to think of them non-recursively

foldr

Replace (:) by the given function, and [] by given value.

sum [1, 2, 3]

= foldr (+) 0 [1, 2, 3]

= foldr (+) 0 (1:(2:(3:[])))

= 1 + (2 + (3 + 0))

= 6

foldl

Same idea, but associating to the left

sum [1, 2, 3]

= foldl (+) 0 [1, 2, 3]

= foldl (+) 0 (1:(2:(3:[])))

= ((0 + 1) + 2) + 3

= 6

COMP2221—Session 10: Summary 3

Summary

Content overview

• Intro to functional programming paradigm

• Types I: built-in types, type checking

• Functions I: currying and λ-expressions

• Lists: pattern matching, comprehensions

• Types II: polymorphism, algebraic data types, type classes

• Recursion: structure, classification, and complexity

• Functions II: higher-order functions

• Evaluation strategies: lazy vs. eager

• λ-calculus: syntax and reduction rules

COMP2221—Session 10: Summary 4

Functional programming paradigm

• A programming paradigm where the building block of computation

is the application of functions to arguments.

• Functional programs specify a data-flow to describe what

computations should proceed

• Algebraic programming style dominated by function application and

composition

⇒ a functional language is one that supports and encourages

programming in this style.

COMP2221—Session 10: Summary 5

Data types

Type: collection of values

Haskell built-in types

• Int, Integer, Char, String, ...

• Lists [1,2,3]

• Tuples (1,2,3)

Haskell custom data types

• type keyword for synonyms

• data keyword for new algebraic types

COMP2221—Session 10: Summary 6

Polymorphism

• Polymorphism: functions that are defined generically for many types.

• Types of polymorphism: parametric, ad-hoc, subtype polymorphism

• Type variables: length :: [a] -> Int “a” is a type variable, length

is generic over the type of the list.

• Haskell uses parametric polymorphism “generic functions”

• Constraining polymorphic functions: type classes

• (+) :: Num a => a -> a -> a “+ works on any type a as long as

that type is numeric”

• Relevant type classes: Num “numeric”, Eq “equality”, Ord “ordered”

⇒ Include class constraints in type definitions when appropriate

COMP2221—Session 10: Summary 7

Lists

• Pattern matching: can match literal values but also match a list

pattern, and bind the values
sumTwo :: Num a => [a] -> a

sumTwo (x:y:_) = x + y

• List comprehensions: constrcut new lists based on generator and

guard expressions
[x | x <- [1..5], even x]

COMP2221—Session 10: Summary 8

Recursion

Recursion: a function that calls itself until it reaches a base case.

Definition (Tail recursion)

A function is tail recursive if the last result of a recursive call is the

result of the function itself.

Definition (Linear recursion)

The recursive call contains only a single self reference.

Definition (Multiple recursion)

The recursive call contains multiple self references.

Definition (Direct recursion)

The function calls itself recursively.

Definition (Mutual/indirect recursion)

Multiple functions call each other recursively.

COMP2221—Session 10: Summary 9

Functions

• Saw nameless or anonymous functions (λ-expressions), and syntax

• Formalises idea of functions defined using currying

add x y = x + y

-- Equivalently

add = \x -> (\y -> x + y)

Definition (Higher order function)

A function that does at least one of

• take one or more functions as arguments

• returns a function as its result

• Due to currying, every function of more than one argument is

higher-order in Haskell

COMP2221—Session 10: Summary 10

Generalizing computational patterns

• Saw Functor for mappable types and Foldable for foldable types

• Instances must obey some equational laws

Functor laws

“Mapping behaves as expected”

-- Distributes over composition

fmap (f . g) xs == fmap f (fmap g xs)

-- Preserves identity

fmap id xs == id xs

COMP2221—Session 10: Summary 11

Evaluation strategies

• Lazy evaluation

• Infinite data structures are fine, as long as we don’t try and look at

all of them

• Call by name (lazy) vs. call by value (eager) → contrast with

imperative languages

• Think about expression as a graph of computations: multiple

different evaluation orders possible

COMP2221—Session 10: Summary 12

λ-calculus

• λ-calculus: set of rules to transform expressions of the following

form

• v (Variables; lower case letters)

• (MN) (Application of M to N)

• (λv .M) (Abstraction aka function with parameter v and body M)

• with M and N being expressions of the same form

• α-conversion: solving name conflicts by renaming variables

• β-reduction: reducing expressions by applying functions to

arguments

COMP2221—Session 10: Summary 13

Summer exam

• Open book, tests mainly comprehension, application and synthesis

• Format: coding-based + conceptual questions

⇒ Practice programming in Haskell

⇒ Think about functional paradigms, look for them elsewhere. Has

your mindset changed?

COMP2221—Session 10: Summary 14

Relevant past paper questions

2022 Q1 (not (d)) and Q2

2021 Q1 (not (e))

2020 Q1 and Q2

2019 Q2 (the only Haskell question)

2018 Q1 (b–e, g) (not (a), (f))

COMP2221—Session 10: Summary 15

Thank you!

COMP2221—Session 10: Summary 15

	Summary

