

Session 9: Folds continued and λ **-calculus**

COMP2221: Functional programming

Laura Morgenstern

laura.morgenstern@durham.ac.uk

COMP2221—Session 9: Folds continued and λ -calculus

- Introduced lazy evaluation
- Saw how expression graphs are evaluated with innermost and outermost strategy
- Contrasted pros and cons of lazy and eager evaluation
- Introduced the idea of folds

Folds: (yet another) family of higher order functions

Folds

- folds process a data structure in some order and build a return value
- Haskell provides a number of these in the standard prelude, with more available in the Data.List module

Folds

- folds process a data structure in some order and build a return value
- Haskell provides a number of these in the standard prelude, with more available in the Data.List module

foldl: left associative fold

How to think about this

- foldr and foldl are recursive
- However, often easier to think of them non-recursively

foldr

Replace (:) by the given function, and [] by given value.

```
sum [1, 2, 3]
= foldr (+) 0 [1, 2, 3]
= foldr (+) 0 (1:(2:(3:[])))
= 1 + (2 + (3 + 0))
= 6
```

foldl

Same idea, but associating to the left

```
sum [1, 2, 3]
= foldl (+) 0 [1, 2, 3]
= foldl (+) 0 (1:(2:(3:[])))
= ((0 + 1) + 2) + 3
= 6
```

COMP2221—Session 9: Folds continued and λ -calculus

Purpose of folds

- Capture many linear recursive patterns in a clean way
- Can have efficient library implementation \Rightarrow can apply program optimisations
- Actually apply to all Foldable types, not just lists
- e.g. foldr's type is actually foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b
- So we can write code for lists and (say) trees identically

Folds are general

- Many library functions on lists are written using folds product = foldr (*) 1 sum = foldr (+) 0 maximum = foldr1 max
- Practical sheet 4 asks you to define some others

Which to choose?

foldr

- Generally foldr is the right choice
- Works even for infinite lists
- Note foldr (:) [] == id
- Can terminate early

foldl

- Can't terminate early
- Doesn't work on infinite lists
- Usually best to use strict version:

import Data.List
foldl' -- note trailing '

Aside: it is probably a historical accident that fold1 is not strict (see http://www.well-typed.com/blog/90/)

\Rightarrow Caution: foldr and foldl lead to different result if f not commutative

COMP2221—Session 9: Folds continued and λ -calculus

• Foldable type class: if we can *combine* an a and a b to produce a new b, then, given a start value and a container of as we can reduce it to a b

```
class Foldable f where
  -- minimal definition requires this
  foldr :: (a -> b -> b) -> b -> f a -> b
data List a = Nil | Cons a (List a)
  deriving (Eq, Show)
instance Foldable List where
   foldr :: (a -> b -> b) -> b -> List a -> b
  foldr _ z Nil = z
   foldr binop z (Cons a tail) = a `binop` (foldr binop z tail)
```

λ -calculus

- Simplest known turing-complete programming language
- Inspired functional programming languages
- Calculus: set of rules to transform things
- $\lambda\text{-calculus:}$ set of rules to transform expressions of the following form
 - v (Variables; lower case letters)
 - (MN) (Application of M to N)
 - $(\lambda v.M)$ (Abstraction aka function with parameter v and body M)
 - with M and N being expressions of the same form
- Functions take exactly one argument

Valid λ -expressions:

- $x \rightarrow a$ variable
- $(\lambda x.x) \rightarrow$ the identity function
- $((\lambda x.x)a) \rightarrow$ the identity function applied to value a
- $(\lambda x.(\lambda y.(xy))) \rightarrow$ nested function, i.e. currying
- $(((\lambda x.(\lambda y.(xy)))a)b) \rightarrow$ nested function applied to values a and b
- \rightarrow application associates to the left \rightarrow abstraction associates to the right

α -Conversion

 α -conversion allows to resolve name conflicts by renaming parameters via $(\lambda x.M[x]) \rightarrow (\lambda y.M[y])$.

β -Reduction

 β -reduction allows to substitute the argument of an abstraction with the value of an application $((\lambda x.M[x])N) \rightarrow (M[x := N])$.

- Saw implementation of foldr and foldl
- Introduced and used type class *Foldable* to capture computational pattern *reduction*
- Introduced syntax of $\lambda\text{-calculus}$
- Saw how abstraction, application and reduction work in $\lambda\text{-calculus}$