
Session 9: Folds continued and λ-calculus

COMP2221: Functional programming

Laura Morgenstern

laura.morgenstern@durham.ac.uk

COMP2221—Session 9: Folds continued and λ-calculus 1



Recap

• Introduced lazy evaluation

• Saw how expression graphs are evaluated with innermost and

outermost strategy

• Contrasted pros and cons of lazy and eager evaluation

• Introduced the idea of folds

COMP2221—Session 9: Folds continued and λ-calculus 2



Folds: (yet another) family of

higher order functions



Folds

• folds process a data structure in some order and build a return value

• Haskell provides a number of these in the standard prelude, with

more available in the Data.List module

foldr: right associative fold

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [] = z

foldr f z (x:xs) = x `f` (foldr f z xs)

COMP2221—Session 9: Folds continued and λ-calculus 3



Folds

• folds process a data structure in some order and build a return value

• Haskell provides a number of these in the standard prelude, with

more available in the Data.List module

foldl: left associative fold

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f z [] = z

foldl f z (x:xs) = foldl f (z `f` x) xs -- tail recursive!

COMP2221—Session 9: Folds continued and λ-calculus 3



How to think about this

• foldr and foldl are recursive

• However, often easier to think of them non-recursively

foldr

Replace (:) by the given function, and [] by given value.

sum [1, 2, 3]

= foldr (+) 0 [1, 2, 3]

= foldr (+) 0 (1:(2:(3:[])))

= 1 + (2 + (3 + 0))

= 6

foldl

Same idea, but associating to the left

sum [1, 2, 3]

= foldl (+) 0 [1, 2, 3]

= foldl (+) 0 (1:(2:(3:[])))

= ((0 + 1) + 2) + 3

= 6

COMP2221—Session 9: Folds continued and λ-calculus 4



Purpose of folds

• Capture many linear recursive patterns in a clean way

• Can have efficient library implementation ⇒ can apply program

optimisations

• Actually apply to all Foldable types, not just lists

• e.g. foldr’s type is actually
foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b

• So we can write code for lists and (say) trees identically

Folds are general

• Many library functions on lists are written using folds
product = foldr (*) 1

sum = foldr (+) 0

maximum = foldr1 max

• Practical sheet 4 asks you to define some others

COMP2221—Session 9: Folds continued and λ-calculus 5



Which to choose?

foldr

• Generally foldr is the right choice

• Works even for infinite lists

• Note foldr (:) [] == id

• Can terminate early

foldl

• Can’t terminate early

• Doesn’t work on infinite lists

• Usually best to use strict version:

import Data.List

foldl' -- note trailing '

• Aside: it is probably a historical accident that foldl is not strict (see

http://www.well-typed.com/blog/90/)

⇒ Caution: foldr and foldl lead to different result if f not commutative

COMP2221—Session 9: Folds continued and λ-calculus 6

http://www.well-typed.com/blog/90/


Foldable data structures

• Foldable type class: if we can combine an a and a b to produce a

new b, then, given a start value and a container of as we can reduce

it to a b

class Foldable f where

-- minimal definition requires this

foldr :: (a -> b -> b) -> b -> f a -> b

data List a = Nil | Cons a (List a)

deriving (Eq, Show)

instance Foldable List where

foldr :: (a -> b -> b) -> b -> List a -> b

foldr _ z Nil = z

foldr binop z (Cons a tail) = a `binop` (foldr binop z tail)

COMP2221—Session 9: Folds continued and λ-calculus 7



λ-calculus



Introduction

• Simplest known turing-complete programming language

• Inspired functional programming languages

• Calculus: set of rules to transform things

• λ-calculus: set of rules to transform expressions of the following

form

• v (Variables; lower case letters)

• (MN) (Application of M to N)

• (λv .M) (Abstraction aka function with parameter v and body M)

• with M and N being expressions of the same form

• Functions take exactly one argument

COMP2221—Session 9: Folds continued and λ-calculus 8



Examples

Valid λ-expressions:

• x → a variable

• (λx .x) → the identity function

• ((λx .x)a) → the identity function applied to value a

• (λx .(λy .(xy))) → nested function, i.e. currying

• (((λx .(λy .(xy)))a)b) → nested function applied to values a and b

→ application associates to the left → abstraction associates to the right

COMP2221—Session 9: Folds continued and λ-calculus 9



Transformation rules

α-Conversion

α-conversion allows to resolve name conflicts by renaming parameters

via (λx .M[x ]) → (λy .M[y ]).

β-Reduction

β-reduction allows to substitute the argument of an abstraction with

the value of an application ((λx .M[x ])N) → (M[x := N]).

COMP2221—Session 9: Folds continued and λ-calculus 10



Summary

• Saw implementation of foldr and foldl

• Introduced and used type class Foldable to capture computational

pattern reduction

• Introduced syntax of λ-calculus

• Saw how abstraction, application and reduction work in λ-calculus

COMP2221—Session 9: Folds continued and λ-calculus 11


	Folds: (yet another) family of higher order functions
	-calculus

