

Session 8: Lazy evaluation and folds

COMP2221: Functional programming

Laura Morgenstern

laura.morgenstern@durham.ac.uk

- Introduced higher order functions, saw examples map, filter, any, . . .
- Functor as a type class for mappable containers
- Functor laws
	- \bullet fmap id == id
	- fmap $(f g) = f$ map f . fmap g
- Discussed purpose of type class instances for custom data types

data List $a = Nil$ | Cons a (List a) deriving (Eq, Show)

```
instance Functor List where
 fmap Ni1 = Ni1fmap f (Cons x xs) = Cons (f x) (fmap f xs)
```
To show fmap id == id, need to show fmap id (Cons x xs) == Cons x xs for any x, xs.

```
-- Induction hypothesis
fmap id xs = xs-- Base case
-- apply definition
fmap id Nil = Nil
-- Inductive case
fmap id (Cons x xs) = Cons (id x) (fmap id xs)== Cons x (fmap id xs)
== Cons x xs -- Done!
```
Exercise: check whether the second law holds

[Lazy evaluation](#page-3-0)

How does this work?

Fibonacci sequence

```
F_0 = 0F_1 = 1F_n = F_{n-1} + F_{n-2}
```

```
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
Prelude> take 10 fibs
[0,1,1,2,3,5,8,13,21,34]
```
How long?

```
def slow function(a):
   ... # 5 minute computation
def compute(a, b):
  if a == 0:
      return 1
   else:
     return b
compute(0, slow_function(0))
compute(1, slow_function(1))
```

```
slow_function :: Int \rightarrow Int
-- 5 minute computation
slow function a = ...compute :: Int -> Int -> Int
compute a b \mid a == 0 = 1| otherwise = bcompute 0 (slow_function 0)
compute 1 (slow_function 1)
```
- Not only is Haskell a pure *functional* language
- It is also evaluated *lazily*
- Hence, we can work with infinite data structures
- ... and defer computation until such time as it's strictly necessary

Definition (Lazy evaluation)

Expressions are not evaluated when they are bound to variables. Instead, their evaluation is deferred until their result is needed by other computations.

Evaluation strategies

- Haskell's basic method of computation is *application* of functions to arguments
- Even here, though we already have some freedom

```
inc :: Int -> Int
 inc n = n + 1inc (2*3)
Two options for the evaluation order
  inc (2*3)
  = inc 6 - applying *= 6 + 1 - applying inc= 7 - applying +inc (2*3)
                                               = (2*3) + 1 - \frac{1}{2} \sinh \theta inc.
                                               = 6 + 1 - applying *= 7 - applying +
```
• As long as all the expression evaluations *terminate*, the order we choose to do things doesn't matter.

Evaluation strategies II

- We can represent a function call and its arguments in Haskell as a graph
- Nodes in the graph are either *terminal* or *compound*. The latter are called reducible expressions or redexes.

- \bullet 1, 2, 3, and 4 are terminal (not reducible) expressions
- \bullet (+) and $\frac{mult}{mult}$ are reducible expressions.

- Evaluate "bottom up"
- First evaluate redexes that only contain terminal or irreducible expressions, then repeat
- Need to specify evaluation order at leaves. Typically: "left to right"

- Evaluate "top down"
- First evaluate redexes that are outermost, then repeat
- Again, need an evaluation order for children, typically choose "left to right".

- For finite expressions, both innermost and outermost evaluation terminate.
- Not so for infinite expressions

```
inf :: Integer
int = 1 + inffst :: (a, b) \rightarrow afst (x, ) = xPrelude> fst (0, inf)
```
• Innermost evaluation will fail to terminate here, whereas outermost evaluation produces a result.

```
inf :: Integer
int = 1 + inffst :: (a, b) \rightarrow afst (x, ) = xPrelude> fst (0, inf)
Prelude> fst (0, 1 + inf) -- applying inf
Prelude> fst (0, 1 + 1 + inf) -- applying inf
...
```

```
inf :: Integer
inf = 1 + inffst :: (a, b) \rightarrow afst (x, ) = xPrelude> fst (0, inf)
0 - applying fst
```
COMP2221—Session 8: Lazy evaluation and folds 11 and 12 and 12 and 11 and 11 and 11 and 11 and 11 and 11 and 11

Call by value

- Also called eager evaluation
- Innermost evaluation
- Arguments to functions are always fully evaluated before the function is applied
- Each argument is evaluated exactly once
- Evaluation strategy for most imperative languages

Call by name

- Also called lazy evaluation
- Outermost evaluation
- Functions are applied before their arguments are evaluated
- Each argument may be evaluated more than once
- Evaluation strategy in Haskell (and others)

• Straightforward implementation of call-by-name can lead to inefficiency in the number of times an argument is evaluated

```
square :: Int -> Int
square n = n * nPrelude> square (1+2)
= (1 + 2) * (1 + 2) - applying square
== 3 * (1 + 2) -- a\n  <i>nonluina</i> +== 3 * 3 --- applying +== 9
```
- To avoid this, Haskell implements sharing of arguments.
- We can think of this as rewriting the evaluation tree into a graph.

Avoiding inefficiences: sharing

[Folds: \(yet another\) family of](#page-15-0) [higher order functions](#page-15-0)

- folds process a data structure in some order and build a return value
- Haskell provides a number of these in the standard prelude, with more available in the Data. List module

Folds

- folds process a data structure in some order and build a return value
- Haskell provides a number of these in the standard prelude, with more available in the Data. List module

foldl: left associative fold

How to think about this

- foldr and foldl are recursive
- However, often easier to think of them non-recursively

foldr

Replace $\langle \cdot \rangle$ by the given function, and \Box by given value.

```
sum [1, 2, 3]
= foldr (+) 0 [1, 2, 3]= foldr (+) 0 (1:(2:(3:[1))))= 1 + (2 + (3 + 0))= 6
```
foldl

Same idea, but associating to the left

```
sum [1, 2, 3]
= foldl (+) 0 [1, 2, 3]= foldl (+) 0 (1:(2:(3:[1))))= (((1 + 2) + 3) + 0)
= 6
```
Purpose of folds

- Capture many linear recursive patterns in a clean way
- Can have efficient library implementation \Rightarrow can apply program optimisations
- Actually apply to all Foldable types, not just lists
- e.g. foldr's type is actually foldr :: Foldable $t \Rightarrow (a \rightarrow b \rightarrow b) \Rightarrow b \rightarrow t$ a $\rightarrow b$
- So we can write code for lists and (say) trees identically

Folds are general

- Many library functions on lists are written using folds product = foldr $(*)$ 1 $sum = foldr$ (+) 0 $maximum = foldr1$ max
- Practical sheet 4 asks you to define some others

Which to choose?

foldr

- Generally foldr is the right choice
- Works even for infinite lists
- Note foldr $(:)$ $[] == id$
- Can terminate early

foldl

- Can't terminate early
- Doesn't work on infinite lists
- Usually best to use strict version:

```
import Data.List
foldl' -- note trailing '
```
• Aside: it is probably a historical accident that foldl is not strict (see <http://www.well-typed.com/blog/90/>)

 \Rightarrow CAUTION: foldr and foldl lead to different result if operator f not $COMP222111139452141882$ Lazy evaluation and folds commutative 17 • Foldable type class: if we can *combine* an a and a b to produce a new \mathbf{b} , then, given a start value and a container of as we can reduce it to a b

```
class Foldable f where
  -- minimal definition requires this
  foldr :: (a -> b -> b) -> b -> f a -> bdata List a = Nil | Cons a (List a)
  deriving (Eq, Show)
instance Foldable List where
    foldr :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow List a \rightarrow bfoldr z Nil =zfoldr binop z (Cons \tati) = a 'binop' (foldList \tbinom{binop} z tail)
```
- Introduced the concept of lazy evaluation
- Saw implementation of foldr and foldl
- Introduced and used type class Foldable to capture computational pattern reduction