
Session 8: Lazy evaluation and folds

COMP2221: Functional programming

Laura Morgenstern

laura.morgenstern@durham.ac.uk

COMP2221—Session 8: Lazy evaluation and folds 1



Recap

• Introduced higher order functions, saw examples map, filter, any,

. . .

• Functor as a type class for mappable containers

• Functor laws

• fmap id == id

• fmap (f . g) == fmap f . fmap g

• Discussed purpose of type class instances for custom data types

COMP2221—Session 8: Lazy evaluation and folds 2



Recap: Correctness of listMap

data List a = Nil | Cons a (List a) deriving (Eq, Show)

instance Functor List where

fmap _ Nil = Nil

fmap f (Cons x xs) = Cons (f x) (fmap f xs)

To show fmap id == id, need to show fmap id (Cons x xs) == Cons x xs for

any x, xs.

-- Induction hypothesis

fmap id xs = xs

-- Base case

-- apply definition

fmap id Nil = Nil

-- Inductive case

fmap id (Cons x xs) = Cons (id x) (fmap id xs)

== Cons x (fmap id xs)

== Cons x xs -- Done!

Exercise: check whether the second law holds

COMP2221—Session 8: Lazy evaluation and folds 3



Lazy evaluation



How does this work?

Fibonacci sequence

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

Prelude> take 10 fibs

[0,1,1,2,3,5,8,13,21,34]

How long?
def slow_function(a):

... # 5 minute computation

def compute(a, b):

if a == 0:

return 1

else:

return b

compute(0, slow_function(0))

compute(1, slow_function(1))

slow_function :: Int -> Int

-- 5 minute computation

slow_function a = ...

compute :: Int -> Int -> Int

compute a b | a == 0 = 1

| otherwise = b

compute 0 (slow_function 0)

compute 1 (slow_function 1)

COMP2221—Session 8: Lazy evaluation and folds 4



Lazy evaluation AKA I’ll get it when you need it

• Not only is Haskell a pure functional language

• It is also evaluated lazily

• Hence, we can work with infinite data structures

• . . . and defer computation until such time as it’s strictly necessary

Definition (Lazy evaluation)

Expressions are not evaluated when they are bound to variables.

Instead, their evaluation is deferred until their result is needed by other

computations.

COMP2221—Session 8: Lazy evaluation and folds 5



Evaluation strategies

• Haskell’s basic method of computation is application of functions to

arguments

• Even here, though we already have some freedom

Example

inc :: Int -> Int

inc n = n + 1

inc (2*3)

Two options for the evaluation order

inc (2*3)

= inc 6 -- applying *

= 6 + 1 -- applying inc

= 7 -- applying +

inc (2*3)

= (2*3) + 1 -- applying inc

= 6 + 1 -- applying *

= 7 -- applying +

• As long as all the expression evaluations terminate, the order we

choose to do things doesn’t matter.

COMP2221—Session 8: Lazy evaluation and folds 6



Evaluation strategies II

• We can represent a function call and its arguments in Haskell as a

graph

• Nodes in the graph are either terminal or compound. The latter are

called reducible expressions or redexes.

Example

mult :: (Int, Int) -> Int

mult (x, y) = x*y

mult (1+2, 3+4)

mult

+

1 2

+

3 4

• 1, 2, 3, and 4 are terminal (not reducible) expressions

• (+) and mult are reducible expressions.

COMP2221—Session 8: Lazy evaluation and folds 7



Innermost evaluation

• Evaluate “bottom up”

• First evaluate redexes that only contain terminal or irreducible

expressions, then repeat

• Need to specify evaluation order at leaves. Typically: “left to right”

Example

mult

+

1 2

+

3 4

mult

3 +

3 4

mult

3 7

*

3 7

21

COMP2221—Session 8: Lazy evaluation and folds 8



Outermost evaluation

• Evaluate “top down”

• First evaluate redexes that are outermost, then repeat

• Again, need an evaluation order for children, typically choose “left to

right”.

Example

mult

+

1 2

+

3 4

*

+

1 2

+

3 4

*

3 +

3 4

*

3 7

21

COMP2221—Session 8: Lazy evaluation and folds 9



Termination

• For finite expressions, both innermost and outermost evaluation

terminate.

• Not so for infinite expressions

Example

inf :: Integer

inf = 1 + inf

fst :: (a, b) -> a

fst (x, _) = x

Prelude> fst (0, inf)

• Innermost evaluation will fail to terminate here, whereas outermost

evaluation produces a result.

COMP2221—Session 8: Lazy evaluation and folds 10



Termination II

Innermost evaluation: never terminates

inf :: Integer

inf = 1 + inf

fst :: (a, b) -> a

fst (x, _) = x

Prelude> fst (0, inf)

Prelude> fst (0, 1 + inf) -- applying inf

Prelude> fst (0, 1 + 1 + inf) -- applying inf

...

Outermost evaluation: terminates in one step

inf :: Integer

inf = 1 + inf

fst :: (a, b) -> a

fst (x, _) = x

Prelude> fst (0, inf)

0 -- applying fst

COMP2221—Session 8: Lazy evaluation and folds 11



Call by name or value?

Call by value

• Also called eager evaluation

• Innermost evaluation

• Arguments to functions are

always fully evaluated before

the function is applied

• Each argument is evaluated

exactly once

• Evaluation strategy for most

imperative languages

Call by name

• Also called lazy evaluation

• Outermost evaluation

• Functions are applied before

their arguments are evaluated

• Each argument may be

evaluated more than once

• Evaluation strategy in Haskell

(and others)

COMP2221—Session 8: Lazy evaluation and folds 12



Avoiding inefficiences: sharing

• Straightforward implementation of call-by-name can lead to

inefficiency in the number of times an argument is evaluated

Example

square :: Int -> Int

square n = n * n

Prelude> square (1+2)

== (1 + 2) * (1 + 2) -- applying square

== 3 * (1 + 2) -- applying +

== 3 * 3 -- applying +

== 9

• To avoid this, Haskell implements sharing of arguments.

• We can think of this as rewriting the evaluation tree into a graph.

COMP2221—Session 8: Lazy evaluation and folds 13



Avoiding inefficiences: sharing

Without sharing

s

+

1 2

*

+

1 2

+

1 2

With sharing

s

+

1 2

*

+

1 2

COMP2221—Session 8: Lazy evaluation and folds 13



Folds: (yet another) family of

higher order functions



Folds

• folds process a data structure in some order and build a return value

• Haskell provides a number of these in the standard prelude, with

more available in the Data.List module

foldr: right associative fold

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [] = z

foldr f z (x:xs) = x `f` (foldr f z xs)

COMP2221—Session 8: Lazy evaluation and folds 14



Folds

• folds process a data structure in some order and build a return value

• Haskell provides a number of these in the standard prelude, with

more available in the Data.List module

foldl: left associative fold

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f z [] = z

foldl f z (x:xs) = foldl f (z `f` x) xs -- tail recursive!

COMP2221—Session 8: Lazy evaluation and folds 14



How to think about this

• foldr and foldl are recursive

• However, often easier to think of them non-recursively

foldr

Replace (:) by the given function, and [] by given value.

sum [1, 2, 3]

= foldr (+) 0 [1, 2, 3]

= foldr (+) 0 (1:(2:(3:[])))

= 1 + (2 + (3 + 0))

= 6

foldl

Same idea, but associating to the left

sum [1, 2, 3]

= foldl (+) 0 [1, 2, 3]

= foldl (+) 0 (1:(2:(3:[])))

= (((1 + 2) + 3) + 0)

= 6

COMP2221—Session 8: Lazy evaluation and folds 15



Purpose of folds

• Capture many linear recursive patterns in a clean way

• Can have efficient library implementation ⇒ can apply program

optimisations

• Actually apply to all Foldable types, not just lists

• e.g. foldr’s type is actually
foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b

• So we can write code for lists and (say) trees identically

Folds are general

• Many library functions on lists are written using folds
product = foldr (*) 1

sum = foldr (+) 0

maximum = foldr1 max

• Practical sheet 4 asks you to define some others

COMP2221—Session 8: Lazy evaluation and folds 16



Which to choose?

foldr

• Generally foldr is the right choice

• Works even for infinite lists

• Note foldr (:) [] == id

• Can terminate early

foldl

• Can’t terminate early

• Doesn’t work on infinite lists

• Usually best to use strict version:

import Data.List

foldl' -- note trailing '

• Aside: it is probably a historical accident that foldl is not strict (see

http://www.well-typed.com/blog/90/)

⇒ CAUTION: foldr and foldl lead to different result if operator f not

commutativeCOMP2221—Session 8: Lazy evaluation and folds 17

http://www.well-typed.com/blog/90/


Foldable data structures

• Foldable type class: if we can combine an a and a b to produce a

new b, then, given a start value and a container of as we can reduce

it to a b

class Foldable f where

-- minimal definition requires this

foldr :: (a -> b -> b) -> b -> f a -> b

data List a = Nil | Cons a (List a)

deriving (Eq, Show)

instance Foldable List where

foldr :: (a -> b -> b) -> b -> List a -> b

foldr _ z Nil = z

foldr binop z (Cons a tail) = a `binop` (foldList binop z tail)

COMP2221—Session 8: Lazy evaluation and folds 18



Summary

• Introduced the concept of lazy evaluation

• Saw implementation of foldr and foldl

• Introduced and used type class Foldable to capture computational

pattern reduction

COMP2221—Session 8: Lazy evaluation and folds 19


	Lazy evaluation
	Folds: (yet another) family of higher order functions

