
Session 7: Recursion and Higher-Order

Functions

COMP2221: Functional programming

Laura Morgenstern

laura.morgenstern@durham.ac.uk

COMP2221—Session 7: Recursion and Higher-Order Functions 1

Recap

• Contrasted sum and product types, and availability in other

languages

• Discussed the pros and cons of classes and algebraic data types

• Considered how to write recursive functions

• Classified recursive functions: linear vs. multi recursion, direct vs.

indirect recursion

COMP2221—Session 7: Recursion and Higher-Order Functions 2

Recursion Continued

Complexity

Is this a good implementation?

• The reverse of a list is computed by appending the head onto the

reverse of the tail.
reverse' :: [a] -> [a]

reverse' [] = []

reverse' (x:xs) = reverse' xs ++ [x]

reverse' [1, 2, 3]

== reverse' [2, 3] ++ [1] -- applying reverse'

== (reverse' [3] ++ [2]) ++ [1] -- applying reverse'

== ((reverse' [] ++ [3]) ++ [2]) ++ [1] -- base case

== (([] ++ [3]) ++ [2]) ++ [1] -- applying (++)

== ([3] ++ [2]) ++ [1] -- applying (++)

== [3, 2] ++ [1] -- applying (++)

== [3, 2, 1]

• Recall that (++) must traverse its first argument

• So this implementation is O(n2) in the length of the input list

COMP2221—Session 7: Recursion and Higher-Order Functions 3

Complexity

Is this a good implementation?

• The reverse of a list is computed by appending the head onto the

reverse of the tail.
reverse' :: [a] -> [a]

reverse' [] = []

reverse' (x:xs) = reverse' xs ++ [x]

reverse' [1, 2, 3]

== reverse' [2, 3] ++ [1] -- applying reverse'

== (reverse' [3] ++ [2]) ++ [1] -- applying reverse'

== ((reverse' [] ++ [3]) ++ [2]) ++ [1] -- base case

== (([] ++ [3]) ++ [2]) ++ [1] -- applying (++)

== ([3] ++ [2]) ++ [1] -- applying (++)

== [3, 2] ++ [1] -- applying (++)

== [3, 2, 1]

• Recall that (++) must traverse its first argument

• So this implementation is O(n2) in the length of the input list

COMP2221—Session 7: Recursion and Higher-Order Functions 3

Complexity

Is this a good implementation?

• The reverse of a list is computed by appending the head onto the

reverse of the tail.
reverse' :: [a] -> [a]

reverse' [] = []

reverse' (x:xs) = reverse' xs ++ [x]

reverse' [1, 2, 3]

== reverse' [2, 3] ++ [1] -- applying reverse'

== (reverse' [3] ++ [2]) ++ [1] -- applying reverse'

== ((reverse' [] ++ [3]) ++ [2]) ++ [1] -- base case

== (([] ++ [3]) ++ [2]) ++ [1] -- applying (++)

== ([3] ++ [2]) ++ [1] -- applying (++)

== [3, 2] ++ [1] -- applying (++)

== [3, 2, 1]

• Recall that (++) must traverse its first argument

• So this implementation is O(n2) in the length of the input list

COMP2221—Session 7: Recursion and Higher-Order Functions 3

Complexity

A more efficient way: combine reverse and append

-- helper function

reverse'' :: [a] -> [a] -> [a]

reverse'' [] ys = ys

reverse'' (x:xs) ys = reverse'' xs (x:ys)

reverse' :: [a] -> [a]

reverse' xs = reverse'' xs []

reverse' [1, 2, 3, 4]

== reverse'' [1, 2, 3, 4] [] -- applying reverse'

== reverse'' [2, 3, 4] (1:[]) -- applying reverse''

== reverse'' [3, 4] (2:1:[]) -- applying reverse''

== reverse'' [4] (3:2:1:[]) -- applying reverse'

== reverse'' [] (4:3:2:1:[]) -- base case

== (4:3:2:1:[]) -- applying (:)

== [4, 3, 2, 1]

• Since (:) is O(1), this implementation is O(n).

COMP2221—Session 7: Recursion and Higher-Order Functions 4

Complexity

A more efficient way: combine reverse and append

-- helper function

reverse'' :: [a] -> [a] -> [a]

reverse'' [] ys = ys

reverse'' (x:xs) ys = reverse'' xs (x:ys)

reverse' :: [a] -> [a]

reverse' xs = reverse'' xs []

reverse' [1, 2, 3, 4]

== reverse'' [1, 2, 3, 4] [] -- applying reverse'

== reverse'' [2, 3, 4] (1:[]) -- applying reverse''

== reverse'' [3, 4] (2:1:[]) -- applying reverse''

== reverse'' [4] (3:2:1:[]) -- applying reverse'

== reverse'' [] (4:3:2:1:[]) -- base case

== (4:3:2:1:[]) -- applying (:)

== [4, 3, 2, 1]

• Since (:) is O(1), this implementation is O(n).

COMP2221—Session 7: Recursion and Higher-Order Functions 4

Debugging errors

• Easy to get confused writing recursive functions

• The case enumeration is useful

• Helpful to write out the call stack “by hand” for a small example

• Usual error is that not all base cases are covered

COMP2221—Session 7: Recursion and Higher-Order Functions 5

Higher Order Functions

Higher order functions

• We’ve seen many functions that are naturally recursive

• We’ll now look at higher order functions in the standard library that

capture many of these patterns

Definition (Higher order function)

A function that does at least one of

• take one or more functions as arguments

• returns a function as its result

• Due to currying, every function of more than one argument is

higher-order in Haskell
add :: Num a => a -> a -> a

add x y = x + y

-- "add 1" returns a function!

Prelude> :type add 1

Num a => a -> a

COMP2221—Session 7: Recursion and Higher-Order Functions 6

Examples for higher order functions on lists

• Many linear recursive functions on lists can be written using higher

order library functions

• map: apply a function to all elements in a list
map :: (a -> b) -> [a] -> [b]

map _ [] = []

map f xs = [f x | x <- xs]

• filter: select elements from a list that satisfy a predicate
filter :: (a -> Bool) -> [a] -> [a]

filter _ [] = []

filter p xs = [x | x <- xs, p x]

• any, all, foldr, takeWhile, dropWhile,

• For more, see http:

//hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html#g:13

COMP2221—Session 7: Recursion and Higher-Order Functions 7

http://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html#g:13
http://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html#g:13

Function composition

• Often tedious to write brackets and explicit variable names

• Can use function composition to simplify this

(f ◦ g)(x) = f (g(x))

• Haskell uses the (.) operator
(.) :: (b -> c) -> (a -> b) -> (a -> c)

f . g = \x -> f (g x)

-- example

odd a = not (even a)

odd = not . even -- Point-free style: no need for the variable a

• Useful for writing composition of functions to be passed to other

higher order functions

• Removes need to write λ-expressions

• Called “pointfree” style.

COMP2221—Session 7: Recursion and Higher-Order Functions 8

• Saw example higher-order functions on lists

• Now we’ll get even more generic and implement these generic

patterns for custom datatypes

COMP2221—Session 7: Recursion and Higher-Order Functions 9

Functors

Use type classes to implement generic higher order functions

• Recall, Haskell has a concept of type classes

• These describe interfaces that can be used to constrain the

polymorphism of functions to those types satisfying the interface

Example

• (+) acts on any type, as long as that type implements the Num interface
(+) :: Num a => a -> a -> a

• (<) acts on any type, as long as that type implements the Ord interface
(<) :: Ord a => a -> a -> Bool

• Haskell comes with many such type classes encapsulating common

patterns

• When we implement our own data types, we can “just” implement

appropriate instances of these classes

COMP2221—Session 7: Recursion and Higher-Order Functions 10

Use type classes to implement generic higher order functions

• Recall, Haskell has a concept of type classes

• These describe interfaces that can be used to constrain the

polymorphism of functions to those types satisfying the interface

• Haskell has many type classes encapsulating common patternsin the

standard library:

• Num: numeric types

• Eq: equality types

• Ord: orderable types

• Functor: mappable types

• Foldable: foldable types

• . . .

• If you implement a new data type, it is worthwhile thinking if it

satisfies any of these interfaces

• When we implement our own data types, we can “just” implement

appropriate instances of these classes

COMP2221—Session 7: Recursion and Higher-Order Functions 11

Let’s look at the types of two “map” functions

data [] a = [] | a:[a]

map :: (a -> b) -> [a] -> [b]

data BinaryTree a = Leaf a | Node a (BinaryTree a) (BinaryTree a)

bmap :: (a -> b) -> BinaryTree a -> BinaryTree b

Only difference is the type name of the container. This suggests that we

should make a “Container” type class to capture this pattern.

Haskell calls this type class Functor

class Functor c where

fmap :: (a -> b) -> c a -> c b

If a type implements the Functor interface, it defines a data structure that

we can transform the elements of in a systematic way.

COMP2221—Session 7: Recursion and Higher-Order Functions 12

fmap: a generic map function

Prelude> :t fmap

fmap :: Functor f => (a -> b) -> f a -> f b

Prelude> fmap (*2) [1, 2, 3]

[2, 4, 6]

class Functor f where

fmap :: (a -> b) -> f a -> f b

• Works on any mappable structure

• Must obey functor laws:

• fmap id c == c Mapping the identity function over a structure should

return the structure untouched.

• fmap f (fmap g c) == fmap (f . g) c Mapping over a container

should distribute over function composition (since the structure is

unchanged, it shouldn’t matter whether we do this in two passes or

one).

COMP2221—Session 7: Recursion and Higher-Order Functions 13

Instance declaration for Functors

Use an instance declaration to attach an fmap implementation to a

container type.

data List a = Nil | Cons a (List a)

deriving (Eq, Show)

instance Functor List where

fmap _ Nil = Nil

fmap f (Cons a tail) = Cons (f a) (fmap f tail)

data BinaryTree a = Leaf a | Node a (BinaryTree a) (BinaryTree a)

deriving (Eq, Show)

instance Functor BinaryTree where

fmap f (Leaf a) = Leaf (f a)

fmap f (Node a l r) = Node (f a) (fmap f l) (fmap f r)

COMP2221—Session 7: Recursion and Higher-Order Functions 14

Generic code

list = Cons 1 (Cons 2 (Cons 4 Nil))

btree = Node 1 (Leaf 2) (Leaf 4)

-- Generic add1

add1 :: (Functor c, Num a) => c a -> c a

add1 = fmap (+1)

Prelude> add1 list

Cons 2 (Cons 3 (Cons 5 Nil))

Prelude> add1 btree

Node 2 (Leaf 3) (Leaf 5)

COMP2221—Session 7: Recursion and Higher-Order Functions 15

Correctness of listMap

data List a = Nil | Cons a (List a) deriving (Eq, Show)

instance Functor List where

fmap _ Nil = Nil

fmap f (Cons x xs) = Cons (f x) (fmap f xs)

To show fmap id == id, need to show fmap id (Cons x xs) == Cons x xs for

any x, xs.

-- Induction hypothesis

fmap id xs = xs

-- Base case

-- apply definition

fmap id Nil = Nil

-- Inductive case

fmap id (Cons x xs) = Cons (id x) (fmap id xs)

== Cons x (fmap id xs)

== Cons x xs -- Done!

Exercise: check whether the second law holds

COMP2221—Session 7: Recursion and Higher-Order Functions 16

Folds: a family of higher order

functions

Folds

• folds process a data structure in some order and build a return value

• Haskell provides a number of these in the standard prelude, with

more available in the Data.List module

foldr: right associative fold

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [] = z

foldr f z (x:xs) = x `f` (foldr f z xs)

COMP2221—Session 7: Recursion and Higher-Order Functions 17

Folds

• folds process a data structure in some order and build a return value

• Haskell provides a number of these in the standard prelude, with

more available in the Data.List module

foldl: left associative fold

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f z [] = z

foldl f z (x:xs) = foldl f (z `f` x) xs -- tail recursive!

COMP2221—Session 7: Recursion and Higher-Order Functions 17

How to think about this

• foldr and foldl are recursive

• However, often easier to think of them non-recursively

foldr

Replace (:) by the given function, and [] by given value.

sum [1, 2, 3]

= foldr (+) 0 [1, 2, 3]

= foldr (+) 0 (1:(2:(3:[])))

= 1 + (2 + (3 + 0))

= 6

foldl

Same idea, but associating to the left

sum [1, 2, 3]

= foldl (+) 0 [1, 2, 3]

= foldl (+) 0 (1:(2:(3:[])))

= (((1 + 2) + 3) + 0)

= 6

COMP2221—Session 7: Recursion and Higher-Order Functions 18

Purpose of folds

• Capture many linear recursive patterns in a clean way

• Can have efficient library implementation ⇒ can apply program

optimisations

• Actually apply to all Foldable types, not just lists

• e.g. foldr’s type is actually
foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b

• So we can write code for lists and (say) trees identically

Folds are general

• Many library functions on lists are written using folds
product = foldr (*) 1

sum = foldr (+) 0

maximum = foldr1 max

• Practical sheet 4 asks you to define some others

COMP2221—Session 7: Recursion and Higher-Order Functions 19

Which to choose?

foldr

• Generally foldr is the right choice

• Works even for infinite lists

• Note foldr (:) [] == id

• Can terminate early

foldl

• Usually best to use strict version:

import Data.List

foldl' -- note trailing '

• Doesn’t work on infinite lists (needs to start at the end)

• Use when you want to reverse the list: foldl (flip (:)) [] == reverse

• Can’t terminate early

⇒ CAUTION: foldr and foldl lead to different result if operator f not

commutative
COMP2221—Session 7: Recursion and Higher-Order Functions 20

Foldable data structures

• Foldable type class: if we can combine an a and a b to produce a new

b, then, given a start value and a container of as I can turn it into a b

class Foldable f where

-- minimal definition requires this

foldr :: (a -> b -> b) -> b -> f a -> b

COMP2221—Session 7: Recursion and Higher-Order Functions 21

Summary

• Introduced definition of higher order functions

• Saw definition and use of a number of such functions on lists

• Talked about Foldable and Functor to capture generic patterns of

computation

COMP2221—Session 7: Recursion and Higher-Order Functions 22

	Recursion Continued
	Higher Order Functions
	Functors
	Folds: a family of higher order functions

