
Session 6: Custom Data Types and Recursion

COMP2221: Functional programming

Laura Morgenstern

laura.morgenstern@durham.ac.uk

COMP2221—Session 6: Custom Data Types and Recursion 1

Recap

• Saw how to define new types in Haskell

• Introduced type keyword for synonyms

• Introduced data for completely new types, and the introduction of

data constructors

• Considered recursive data types

• Saw pattern matching for data constructors

COMP2221—Session 6: Custom Data Types and Recursion 2

Type Theory

• Haskell’s data declarations make Algebraic data types

• This is a type where we specify the “shape” of each element

• The two algebraic operations are “sum” and “product”

Definition (Sum type)

An alternation:

data Foo = A | B

A value of type Foo can either be A or B

Definition (Product type)

A combination:

data Pair = P Int Double

a pair of numbers, an Int and Double together.

COMP2221—Session 6: Custom Data Types and Recursion 3

Other languages: product types

• Almost all languages have product types. They’re just “ordered

bags” of things.

• In Python, we can use tuples or classes

Python

pair = (1, 2)

x, y = pair

• In C we use structs

C struct

struct Pair { struct Pair p;

int x; p.x = 1;

int y; p.y = 2;

}

• In Java, classes

COMP2221—Session 6: Custom Data Types and Recursion 4

Other languages: sum types

• Useful for type safety/compiler warnings: easy to statically prove

that every option is handled

• Less common, although new languages are catching on (e.g. Rust,

Swift)

• In C and Java for integers, you can use an enum
enum Weekdays {

MON, TUE, WED, THU, FRI, SAT, SUN

};

COMP2221—Session 6: Custom Data Types and Recursion 5

OO Classes vs. Algebraic Data Types: Adding new subtypes

OO Classes

Just implement a new subclass

class Car(object):

def seats(self): return 4

class MX5(Car):

def seats(self): return 2

Later

class Mini(Car): pass

Algebraic Data Types

Have to update data constructor

(and hence all functions that use

this type!)

data Car = MX5

-- Later

data Car = MX5 | Mini

COMP2221—Session 6: Custom Data Types and Recursion 6

Classes vs. Algebraic Data Types: Adding new operations

Classes

Must update all classes

class Car(object):

def mpg(self): return 25

def seats(self): return 4

class MX5(Car):

def mpg(self): return 30

def seats(self): return 2

class Mini(Car):

def mpg(self): return 40

Algebraic Data Types

Just write new functions

seats :: Car -> Int

seats MX5 = 2

seats Mini = 4

mpg :: Car -> Int

mpg MX5 = 30

mpg Mini = 40

COMP2221—Session 6: Custom Data Types and Recursion 7

Classes vs. Algebraic Data Types

Classes

3 Easy to add new subtypes: just

make a subclass

7 Hard to add new operations on

existing types: need to change

superclass to add new method

and potentially update all

subclasses

Algebraic data types

7 Hard to add new subtypes:

need to add new constructor

and update all functions that

use the data type

3 Easy to add new operations on

existing types: just write a new

function

COMP2221—Session 6: Custom Data Types and Recursion 8

Recursion

Recursion

Definition

recursion noun

see: recursion.

Definition

Recursion means to define something in terms of itself.

COMP2221—Session 6: Custom Data Types and Recursion 9

Advice when writing recursive functions

1. define the type

2. enumerate the cases

3. define the simple or base cases

4. define the reduction of other cases to simpler ones

5. (optional) generalise and simplify

COMP2221—Session 6: Custom Data Types and Recursion 10

Example: drop

1. define the type

Drop the first n elements from a list

drop :: Int -> [a] -> [a]

2. enumerate the cases

3. define the simple or base cases

4. define the reduction of other cases to simpler ones

5. (optional) generalise and simplify

6. And we’re done (this is the standard library definition)

COMP2221—Session 6: Custom Data Types and Recursion 11

Example: drop

1. define the type

Drop the first n elements from a list

drop :: Int -> [a] -> [a]

2. enumerate the cases

Two cases each for the integer and the list argument

drop 0 [] =

drop 0 (x:xs) =

drop n [] =

drop n (x:xs) =

3. define the simple or base cases

4. define the reduction of other cases to simpler ones

5. (optional) generalise and simplify

6. And we’re done (this is the standard library definition)

COMP2221—Session 6: Custom Data Types and Recursion 11

Example: drop

1. define the type

2. enumerate the cases

Two cases each for the integer and the list argument

drop 0 [] =

drop 0 (x:xs) =

drop n [] =

drop n (x:xs) =

3. define the simple or base cases

Zero and the empty list are fixed points

drop 0 [] = []

drop 0 (x:xs) = x:xs

drop n [] = []

drop n (x:xs) =

4. define the reduction of other cases to simpler ones

5. (optional) generalise and simplify

6. And we’re done (this is the standard library definition)

COMP2221—Session 6: Custom Data Types and Recursion 11

Example: drop

1. define the type

2. enumerate the cases

3. define the simple or base cases

Zero and the empty list are fixed points

drop 0 [] = []

drop 0 (x:xs) = x:xs

drop n [] = []

drop n (x:xs) =

4. define the reduction of other cases to simpler ones

Apply drop to the tail

drop 0 [] = []

drop 0 (x:xs) = x:xs

drop n [] = []

drop n (x:xs) = drop (n-1) xs

5. (optional) generalise and simplify

6. And we’re done (this is the standard library definition)

COMP2221—Session 6: Custom Data Types and Recursion 11

Example: drop

1. define the type

2. enumerate the cases

3. define the simple or base cases

4. define the reduction of other cases to simpler ones

Apply drop to the tail

drop 0 [] = []

drop 0 (x:xs) = x:xs

drop n [] = []

drop n (x:xs) = drop (n-1) xs

5. (optional) generalise and simplify

Compress cases

drop :: Int -> [a] -> [a]

drop 0 xs = xs

drop _ [] = []

drop n (x:xs) = drop (n-1) xs

6. And we’re done (this is the standard library definition)

COMP2221—Session 6: Custom Data Types and Recursion 11

Example: drop

1. define the type

2. enumerate the cases

3. define the simple or base cases

4. define the reduction of other cases to simpler ones

5. (optional) generalise and simplify

Compress cases

drop :: Int -> [a] -> [a]

drop 0 xs = xs

drop _ [] = []

drop n (x:xs) = drop (n-1) xs

6. And we’re done (this is the standard library definition)

COMP2221—Session 6: Custom Data Types and Recursion 11

Equivalence of recursion and iteration

• Both purely iterative and purely recursive programming languages

are Turing complete

• Hence, it is always possible to transform from one representation to

the other

• Which is convenient depends on the algorithm, and the

programming language

Recursion ⇒ iteration

• Write looping constructs, manually manage function call stack

Iteration ⇒ recursion

• Turn loop variables into additional function arguments

• and write a tail recursive function (see later)

COMP2221—Session 6: Custom Data Types and Recursion 12

How are function calls managed?

• Usually a stack is used to manage nested function calls

length :: [a] -> Int

length' [] = 0

length' (x:xs) = 1 + length' xs

Prelude> length' [1, 2, 3]

length’ [1, 2, 3]

length’ [2, 3]

length’ [3]

length’ []

call

call

call

1 + 2 = 3

1 + 1 = 2

1 + 0 = 1

0

return 0

return 1

return 2

return 3

base case

• Each entry on the stack uses memory

• Too many entries causes errors: the dreaded stack overflow

• How big this stack is depends on the language

• Typically “small” in imperative languages and “big” in functional ones

COMP2221—Session 6: Custom Data Types and Recursion 13

Typically don’t have to worry about stack overflows

• In traditional imperative languages, we often try and avoid recursion

• Function calls are more expensive than just looping

• Deep recursion can result in stack overflow:

def fac(n): return 1 if n == 0 else n * fac(n-1)

> fac(3000)

RecursionError Traceback (most recent call last)

----> 1 def fac(n): return 1 if n == 0 else n * fac(n-1)

RecursionError: maximum recursion depth exceeded in comparison

• In contrast, Haskell is fine with much deeper recursion

fac n = if n == 0 then 1 else n * fac (n-1)

> fac(200000)

..... -- fine, if slow

• Unsurprising, given the programming model

• Still prefer to avoid recursion trees that are too deep

COMP2221—Session 6: Custom Data Types and Recursion 14

Classifying recursive functions I

• Since it is natural to write recursive functions, it makes sense to

think about classifying the different types we can encounter

• Classifying the type of recursion is useful to allow us to think about

better/cheaper implementations

Definition (Linear recursion)

The recursive call contains only a single self reference

length' [] = []

length' (_:xs) = 1 + length' xs

Function just calls itself repeatedly until it hits the base case.

Definition (Multiple recursion)

The recursive call contains multiple self references

fib 0 = 0

fib 1 = 1

fib n = fib (n - 1) + fib (n - 2)

COMP2221—Session 6: Custom Data Types and Recursion 15

Classifying recursive functions II

Definition (Direct recursion)

The function calls itself recursively

product' [] = []

product' (x:xs) = x * product' xs

Definition (Mutual/indirect recursion)

Multiple functions call each other recursively

even' :: Integral a => a -> Bool

even' 0 = True

even' n = odd' (n - 1)

odd' :: Integral a => a -> Bool

odd' 0 = False

odd' n = even' (n - 1)

COMP2221—Session 6: Custom Data Types and Recursion 16

Tail recursion: a special case

Definition (Tail recursion)

A function is tail recursive if the last result of a recursive call is the

result of the function itself.

Loosely, the last thing a tail recursive function does - after having

finished all other computations - is call itself with new arguments, or

return a value.

• Such functions are useful because they have a trivial translation into

loops

• Some languages (e.g. Scheme) guarantee that a tail recursive call

will be transformed into a “loop-like” implementation using a

technique called tail call elimination.

⇒ complexity remains unchanged, but implementation is more efficient.

• In Haskell implementations, while nice, this is not so important

(other techniques are used)

COMP2221—Session 6: Custom Data Types and Recursion 17

Iteration ⇔ tail recursion

Loops are convenient

def factorial(n):

res = 1

for i in range(n, 1, -1):

res *= i

return res

Tail recursive implementation

• We can’t write this directly, since we’re not allowed to mutate things

• We can write it with a helper recursive function where all loop

variables become arguments to the function

factorial n = loop n 1

where loop n res | n < 0 = undefined

| n > 1 = loop (n - 1) (res * n)

| otherwise = res

COMP2221—Session 6: Custom Data Types and Recursion 18

Examples

Not tail recursive

Calls (*) after recursing

product' :: Num a => [a] -> a

product' [] = 1

product' (x:xs) = x * product' xs

Tail recursive

Recursive call to loop calls itself “outermost”

product' :: Num a => [a] -> a

product' xs = loop xs 1

where loop [] n = n

loop (x:xs) n = loop xs (x * n)

COMP2221—Session 6: Custom Data Types and Recursion 19

Examples

Also for mutual recursion

Our even/odd functions are mutually tail recursive

even 0 = True

even n = odd (n-1)

odd 0 = False

odd n = even (n-1)

odd 4

==> even 3

==> odd 2

==> even 1

==> odd 0

==> False

COMP2221—Session 6: Custom Data Types and Recursion 19

Complexity

Is this a good implementation?

• The reverse of a list is computed by appending the head onto the

reverse of the tail.
reverse' :: [a] -> [a]

reverse' [] = []

reverse' (x:xs) = reverse' xs ++ [x]

reverse' [1, 2, 3]

== reverse' [2, 3] ++ [1] -- applying reverse'

== (reverse' [3] ++ [2]) ++ [1] -- applying reverse'

== ((reverse' [] ++ [3]) ++ [2]) ++ [1] -- base case

== (([] ++ [3]) ++ [2]) ++ [1] -- applying (++)

== ([3] ++ [2]) ++ [1] -- applying (++)

== [3, 2] ++ [1] -- applying (++)

== [3, 2, 1]

• Recall that (++) must traverse its first argument

• So this implementation is O(n2) in the length of the input list

COMP2221—Session 6: Custom Data Types and Recursion 20

Complexity

Is this a good implementation?

• The reverse of a list is computed by appending the head onto the

reverse of the tail.
reverse' :: [a] -> [a]

reverse' [] = []

reverse' (x:xs) = reverse' xs ++ [x]

reverse' [1, 2, 3]

== reverse' [2, 3] ++ [1] -- applying reverse'

== (reverse' [3] ++ [2]) ++ [1] -- applying reverse'

== ((reverse' [] ++ [3]) ++ [2]) ++ [1] -- base case

== (([] ++ [3]) ++ [2]) ++ [1] -- applying (++)

== ([3] ++ [2]) ++ [1] -- applying (++)

== [3, 2] ++ [1] -- applying (++)

== [3, 2, 1]

• Recall that (++) must traverse its first argument

• So this implementation is O(n2) in the length of the input list

COMP2221—Session 6: Custom Data Types and Recursion 20

Complexity

Is this a good implementation?

• The reverse of a list is computed by appending the head onto the

reverse of the tail.
reverse' :: [a] -> [a]

reverse' [] = []

reverse' (x:xs) = reverse' xs ++ [x]

reverse' [1, 2, 3]

== reverse' [2, 3] ++ [1] -- applying reverse'

== (reverse' [3] ++ [2]) ++ [1] -- applying reverse'

== ((reverse' [] ++ [3]) ++ [2]) ++ [1] -- base case

== (([] ++ [3]) ++ [2]) ++ [1] -- applying (++)

== ([3] ++ [2]) ++ [1] -- applying (++)

== [3, 2] ++ [1] -- applying (++)

== [3, 2, 1]

• Recall that (++) must traverse its first argument

• So this implementation is O(n2) in the length of the input list

COMP2221—Session 6: Custom Data Types and Recursion 20

Complexity

A more efficient way: combine reverse and append

-- helper function

reverse'' :: [a] -> [a] -> [a]

reverse'' [] ys = ys

reverse'' (x:xs) ys = reverse'' xs (x:ys)

reverse' :: [a] -> [a]

reverse' xs = reverse'' xs []

reverse' [1, 2, 3, 4]

== reverse'' [1, 2, 3, 4] [] -- applying reverse'

== reverse'' [2, 3, 4] (1:[]) -- applying reverse''

== reverse'' [3, 4] (2:1:[]) -- applying reverse''

== reverse'' [4] (3:2:1:[]) -- applying reverse'

== reverse'' [] (4:3:2:1:[]) -- base case

== (4:3:2:1:[]) -- applying (:)

== [4, 3, 2, 1]

• Since (:) is O(1), this implementation is O(n).

COMP2221—Session 6: Custom Data Types and Recursion 21

Complexity

A more efficient way: combine reverse and append

-- helper function

reverse'' :: [a] -> [a] -> [a]

reverse'' [] ys = ys

reverse'' (x:xs) ys = reverse'' xs (x:ys)

reverse' :: [a] -> [a]

reverse' xs = reverse'' xs []

reverse' [1, 2, 3, 4]

== reverse'' [1, 2, 3, 4] [] -- applying reverse'

== reverse'' [2, 3, 4] (1:[]) -- applying reverse''

== reverse'' [3, 4] (2:1:[]) -- applying reverse''

== reverse'' [4] (3:2:1:[]) -- applying reverse'

== reverse'' [] (4:3:2:1:[]) -- base case

== (4:3:2:1:[]) -- applying (:)

== [4, 3, 2, 1]

• Since (:) is O(1), this implementation is O(n).

COMP2221—Session 6: Custom Data Types and Recursion 21

Debugging errors

• Easy to get confused writing recursive functions

• The case enumeration is useful

• Helpful to write out the call stack “by hand” for a small example

• Usual error is that not all base cases are covered

COMP2221—Session 6: Custom Data Types and Recursion 22

Summary

• Contrasted sum and product types, and availability in other

languages

• Discussed the pros and cons of classes and algebraic data types

• Considered how to write recursive functions

• Classified recursive functions

COMP2221—Session 6: Custom Data Types and Recursion 23

	Recursion

