
Session 5: Polymorphism and Custom Data

Types

COMP2221: Functional programming

Laura Morgenstern

laura.morgenstern@durham.ac.uk

COMP2221—Session 5: Polymorphism and Custom Data Types 1

Recap

• Saw how the literal list syntax translates into construction with (:)

• Discussed complexity of common list operations

• Made connection to pattern matching of lists

• Introduced list comprehensions as analogous to set notation

• Saw how nested comprehensions and guards work

• Saw how Haskell implements polymorphism through generic

functions
-- length operates on a list of any type a

-- and returns an Int

length :: [a] -> Int

COMP2221—Session 5: Polymorphism and Custom Data Types 2

Recap: Types of Polymorphism

Definition (Parametric polymorphism)

Write a single implementation of a function that applies generically and

identically to values of any type.

Definition (“ad-hoc” polymorphism)

Write multiple implementations of a function, one for each type you

wish to support.

Definition (Subtype polymorphism)

Relate datatypes by some “substitutability”. Write a function for a

supertype instance. Now all subtypes can use it. (see also “Liskov

substitution principle”)

COMP2221—Session 5: Polymorphism and Custom Data Types 3

Contrast with OO languages: examples

Subtype polymorphism
class Foo(object):

def length(self, ...):

pass

class Bar(Foo):

pass

a = Foo().length()

Every Bar is-a Foo, so we can

call the length method.

b = Bar().length()

Ad-hoc polymorphism
class Foo(object):

pass

class Bar(object):

pass

def length(obj):

if isinstance(obj, Foo):

...

elif isinstance(obj, Bar):

...

length knows how to handle things

of type Foo and type Bar

a = length(Foo())

b = length(Bar())

Parametric polymorphism

-- length doesn't care what type the entries

-- in the list are

length :: [a] -> Int

length [] = 0

length (_:xs) = 1 + length xs

COMP2221—Session 5: Polymorphism and Custom Data Types 4

Contrast with OO languages

• Parametric polymorphism also called generic programming

• Introduced in ML in 1975.

• Has been adopted by a number of languages, including traditional

OO ones.

• For example, Java or C# have “generics” for this purpose

// Implementation of HashSet is generic

// Specialised on instantiation

Set<Object> objset = new HashSet<Object>();

• C++ templates also allow for similar style of programming

COMP2221—Session 5: Polymorphism and Custom Data Types 5

Constraining polymorphic functions

• Some polymorphic functions only apply to types that satisfy certain

constraints

• For example (+) works on all types a, as long as that type is a

number type.

Example

(+) :: Num a => a -> a -> a

“For any type a that is an instance of the class Num of numeric types,

(+) has type a -> a -> a”

• This constraint is called a class constraint

• An expression or type with one or more such constraints is called

overloaded.

⇒ Num a => a -> a -> a is an overloaded type and (+) is an overloaded

function.

COMP2221—Session 5: Polymorphism and Custom Data Types 6

Haskell classes

WARNING!

The words class and instance are the same as in object-oriented

programming languages, but their meaning is very different.

Definition (Class)

A collection of types that support certain, specified, overloaded

operations called methods.

Definition (Instance)

A concrete type that belongs to a class and provides implementations of

the required methods.

COMP2221—Session 5: Polymorphism and Custom Data Types 7

Analogous constructs in other languages

• Compare: type “a collection of related values”

• This is not like subclassing and inheritance in Java/C++

• If you write flat interfaces with ‘abc.abstractmethod‘ in Python.

• Rust traits give you something close

• Close to a combination of Java interfaces and generics

• C++ “concepts” (in C++20) are also very similar.

COMP2221—Session 5: Polymorphism and Custom Data Types 8

Defining classes I

• Let us say we want to encapsulate some new property of types

Foo-ness

• We define the interface the type should support
class Foo a where

isfoo :: a -> Bool

• Now we say how types implement this
instance Foo Int where

isfoo _ = False

instance Foo Char where

isfoo c = c `elem` ['a'..'c']

• Can add new interfaces to old types, and new types to old interfaces.

• Contrast Java, where if I implement a new interface it is very

difficult to make existing classes implement it.

COMP2221—Session 5: Polymorphism and Custom Data Types 9

Defining classes II

• Classes (interfaces) can provide default implementation.

• Example, the Eq class representing equality requires both (==) and

(/=).

• Since a == b ⇔ not (a /= b), we can provide default

implementations and only require that an instance implements one.
class Eq a where

(==) :: a -> a -> Bool

x == y = not (x /= y)

(/=) :: a -> a -> Bool

x /= y = not (x == y)

-- instance for MyType only needs to provide one of (==) or (/=).

instance Eq MyType where

x == y = ...

COMP2221—Session 5: Polymorphism and Custom Data Types 10

Adding new data types

Defining data types

• It often makes sense to define new data types

• Multiple reasons to do this:

1. Hide complexity

2. Build new abstractions

3. Type safety

• Haskell has three ways to do this

• type

• data

• newtype (we won’t cover this one)

COMP2221—Session 5: Polymorphism and Custom Data Types 11

Type declarations: new names, old types

• A new name for an existing type can be defined using a type

declaration

String as a synonym for the type [Char]

type String = [Char]

vowels :: String -> [Char]

vowels str = [s | s <- str, s `elem` ['a', 'e', 'i', 'o', 'u']]

Prelude> vowels "word"

"o"

Prelude> vowels ['w', 'o', 'r', 'd']

"o"

• Notice that there is no type distinction: objects of type String and

[Char] are completely interchangeable.

COMP2221—Session 5: Polymorphism and Custom Data Types 12

New names, old types II

• We can use these type declarations to make the semantics of our

code clearer

An integer position in 2D

type Pos = (Int, Int)

origin :: Pos

origin = (0, 0)

left :: Pos -> Pos

left (i, j) = (i - 1, j)

• Reader has to expend less brain power to understand the function

• Similar to C’s typedef

COMP2221—Session 5: Polymorphism and Custom Data Types 13

New names, old types III

• Just like function definitions, type declarations can be parameterised

over type variables

Example

type Pair a = (a, a)

mult :: Pair Int -> Int

mult (m, n) = m*n

dup :: a -> Pair a

dup x = (x, x)

7 Can’t use class constraints in the definition

7 Can’t have recursive types

Not allowed

Prelude> type Tree = (Int, [Tree])

error:

Cycle in type synonym declarations:

COMP2221—Session 5: Polymorphism and Custom Data Types 14

Data declarations: new types

• We can introduce a completely new type by specifying allowed

values using a data declaration

A boolean type

data Bool = False | True

“Bool is a new type, with two new values: False, and True”

• The two values are called constructors for the type Bool

• Both the type name, and the constructor names, must begin with an

upper-case letter.

• This is actually the way Bool is implemented in the standard library

COMP2221—Session 5: Polymorphism and Custom Data Types 15

Using new types

• Once defined, we can use new types exactly like built in ones

Example

data IsTrue = Yes | No | Perhaps

negate :: IsTrue -> IsTrue

-- Pattern matching on constructors

negate Yes = No

negate No = Yes

negate Perhaps = Perhaps

Prelude> negate Perhaps

Perhaps

COMP2221—Session 5: Polymorphism and Custom Data Types 16

Data declarations with fixed type parameters

• The constructors in a data declaration can take arbitrarily many

parameters

Example

data Shape = Circle Float | Rectangle Float Float

“A shape is either a Circle, or a Rectangle. The Circle is defined by one

number, the Rectangle by two”

Pattern matching on the constructors:

area :: Shape -> Float

area (Circle r) = pi * r^2

area (Rectangle x y) = x * y

COMP2221—Session 5: Polymorphism and Custom Data Types 17

Data declarations with type variables

• We can also make our data declarations polymorphic with

appropriate type variables

Example

data Maybe a = Nothing | Just a

“A Maybe is either Nothing or else a Just with a value of arbitrary type”

safehead :: [a] -> Maybe a

safehead [] = Nothing

safehead (x:_) = Just x

COMP2221—Session 5: Polymorphism and Custom Data Types 18

Recursive types

• Data declarations can refer to themselves

Peano numbers

data Nat = Zero | Succ Nat

“Nat is a new type with constructors Zero :: Nat and

Succ :: Nat -> Nat”

• This type contains the infinite sequence of values
Zero

Succ Zero

Succ (Succ Zero)

...

• We could use this to implement a representation of the natural

numbers, and arithmetic
add :: Nat -> Nat -> Nat

add Zero n = n

add (Succ m) n = Succ (add m n)

COMP2221—Session 5: Polymorphism and Custom Data Types 19

Recursive types II

• This kind of recursive type allows very succint definitions of data

structures

Linked list

data List a = Empty | Cons a (List a)

intList = Cons 1 (Cons 2 (Cons 3 Empty))

== [1, 2, 3]

“A List is either Empty, or a Cons of a value and a List”

Linked list in C

typedef struct _Link *Link;

struct _Link {

void *data;

Link next;

}

COMP2221—Session 5: Polymorphism and Custom Data Types 20

A binary tree

A binary tree with values at nodes

data BTree a = Empty | Node a (BTree a) (BTree a)

btree = Node 1 (Node 2 (Node 3 Empty Empty)

(Node 4 Empty Empty))

(Node 5 Empty Empty)

“A BTree is either Empty, or a Node containing a value and two

BTrees”

1

52

43

COMP2221—Session 5: Polymorphism and Custom Data Types 21

Pattern matching

• Recall the pattern matching syntax on lists
list = [1, 2, 3, 4] == 1:[2, 3, 4]

-- Binds tip to 1, rest to [2, 3, 4]

(tip:rest) = list

• The pattern matches the “constructor” of the list, as if the

declaration were
data [] a = [] | a : [a]

• Exactly the same pattern matching applies to data types on their

data constructors
data List a = Empty | Cons a (List a)

list = Cons 1 (Cons 2 (Cons 3 Empty))

-- Binds tip to 1, rest to (Cons 2 (Cons 3 Empty))

(Cons tip rest) = list

COMP2221—Session 5: Polymorphism and Custom Data Types 22

Some type theory and contrasts

• Haskell’s data declarations make Algebraic data types

• This is a type where we specify the “shape” of each element

• The two algebraic operations are “sum” and “product”

Definition (Sum type)

An alternation:

data Foo = A | B

A value of type Foo can either be A or B

Definition (Product type)

A combination:

data Pair = P Int Double

a pair of numbers, an Int and Double together.

COMP2221—Session 5: Polymorphism and Custom Data Types 23

Other languages: product types

• Almost all languages have product types. They’re just “ordered

bags” of things.

• In Python, we can use tuples or classes

Python

pair = (1, 2)

x, y = pair

• In C we use structs

C struct

struct Pair { struct Pair p;

int x; p.x = 1;

int y; p.y = 2;

}

• In Java, classes

COMP2221—Session 5: Polymorphism and Custom Data Types 24

Other languages: sum types

• Useful for type safety/compiler warnings: easy to statically prove

that every option is handled

• Less common, although new languages are catching on (e.g. Rust,

Swift)

• In C and Java for integers, you can use an enum
enum Weekdays {

MON, TUE, WED, THU, FRI, SAT, SUN

};

COMP2221—Session 5: Polymorphism and Custom Data Types 25

Haskell types: pros and cons

Classes

3 Easy to add new “kinds of

things”: just make a subclass

7 Hard to add new “operation on

existing things”: need to

change superclass to add new

method and potentially update

all subclasses

Algebraic data types

7 Hard to add new “kinds of

things”: need to add new

constructor and update all

functions that use the data type

3 Easy to add new “operation on

existing things”: just write a

new function

COMP2221—Session 5: Polymorphism and Custom Data Types 26

Pros and Cons II

Adding new things

Just implement a new subclass

class Car(object):

def seats(self): return 4

class MX5(Car):

def seats(self): return 2

Later

class Mini(Car): pass

Have to update data constructor

data Car = MX5

-- Later

data Car = MX5 | Mini

Adding new operations

Must update all classes

class Car(object):

def mpg(self): return 25

def seats(self): return 4

class MX5(Car):

def mpg(self): return 30

def seats(self): return 2

class Mini(Car):

def mpg(self): return 40

Just write new functions

seats :: Car -> Int

seats MX5 = 2

seats Mini = 4

mpg :: Car -> Int

mpg MX5 = 30

mpg Mini = 40

COMP2221—Session 5: Polymorphism and Custom Data Types 27

Summary

• Saw how to define new types in Haskell

• Introduced type keyword for synonyms

• Introduced data for completely new types, and the introduction of

data constructors

• Saw pattern matching for data constructors

• Contrasted sum and product types, and availability in other

languages

COMP2221—Session 5: Polymorphism and Custom Data Types 28

	Adding new data types

