
Session 4: Lists and Polymorphism

COMP2221: Functional programming

Laura Morgenstern

laura.morgenstern@durham.ac.uk

COMP2221—Session 4: Lists and Polymorphism 1

Recap

• Learned that functions have types

• Discussed currying as a manner to define functions with multiple

arguments

• Introduced the idea of anonymous functions

• Saw syntax for these λ expressions in Haskell

• And how they can formalise (or make it easier to read) curried

functions:
add x y = x + y

-- vs

add = \x -> (\y -> x + y)

• Considered infix and prefix notation

COMP2221—Session 4: Lists and Polymorphism 2

Lists: pattern matching

Representation of lists

• Every non-empty list is created by repeated use of the (:) operator

“construct” that adds an element to the start of a list

[1, 2, 3, 4] = 1 : (2 : (3 : (4 : [])))

• This is a representation of a linked list

• Operations on lists such as indexing, or computing the length must

therefore traverse the list.

⇒ Operations such reverse, length, (!!) are linear in the length of the

list.

• Getting the head and tail is constant time, as is (:) itself.

COMP2221—Session 4: Lists and Polymorphism 3

Pattern matching on lists

• lists can be used for pattern matching in function definitions
startsWithA :: [Char] -> Bool

startsWithA ['a', _, _] = True

startsWithA _ = False

• Matches 3-element lists and checks if the first entry is the character

'a'.

Careful

Use patterns in the equations defining a function. Not in the type of

the function.

Pattern matches in the equations don’t change the type of the function.

They just say how it should act on particular expressions.

COMP2221—Session 4: Lists and Polymorphism 4

Pattern matching on lists

• How match 'a' and not care how long the list is?

• Can’t use literal list syntax. Instead, use list constructor syntax for

matching.
startsWithA :: [Char] -> Bool

startsWithA ('a':_) = True

startsWithA _ = False

• ('a':_) matches any list of length at least 1 whose first entry is 'a'.

• The wildcard match _ matches anything else.

• This works to match multiple entries too:
startsWithAB :: [Char] -> Bool

startsWithAB ('a':'b':_) = True

startsWithAB _ = False

COMP2221—Session 4: Lists and Polymorphism 5

Binding variables in pattern matching

• As well as matching literal values, we can also match a (list)

pattern, and bind the values.
sumTwo :: Num a => [a] -> a

sumTwo (x:y:_) = x + y

• Match lists of length at least two and sum their first two entries

Example

sumTwo [1, 2, 3, 4]

-- introduces the bindings

x = 1

y = 2

_ = [3, 4]

• Reminder: can’t repeat variable names in bindings (exception _)
-- Not allowed

sumThree (a:a:b:_) = a + a + b

-- Allowed

second (_:a:_) = a

COMP2221—Session 4: Lists and Polymorphism 6

What types of pattern can I match on?

• Patterns are constructed in the same way that we would construct

the arguments to the function
(&&) :: Bool -> Bool -> Bool

True && True = True

False && _ = False

-- Used as:

a && b

head :: [a] -> a

head (x:_) = x

-- Used as:

head [1, 2, 3] == head (1:[2, 3])

• This is a general rule in constructing pattern matches “If I were to

call the function, what structure do I want to match?”

• Caveat: can only match “data constructors”
-- Not allowed

last :: [a] -> a

last (xs ++ [x]) = x

COMP2221—Session 4: Lists and Polymorphism 7

Lists: comprehensions

List comprehensions I: syntax

• In maths, we often use comprehensions to construct new sets from

already defined ones

{2, 4} = {x | x ∈ {1..5}, x mod 2 = 0}

“The set of all integers x between 1 and 5 such that x is even.”

• Haskell supports similar notation for constructing lists.
Prelude> [x | x <- [1..5], x `mod` 2 == 0]

[2, 4]

“The list of all integers x where x is drawn from [1..5] and x is

even”

• x <- [1..5] is called a generator

• Compare Python comprehensions
[x for x in range(1, 6) if (x % 2) == 0]

COMP2221—Session 4: Lists and Polymorphism 8

List comprehensions II: generators

• Comprehensions can contain multiple generators, separated by

commas
Prelude> [(x, y) | x <- [1,2,3], y <- [4, 5]]

[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

• Variables in the later generator change faster: analogous to nested

loops
l = []

for x in [1, 2, 3]:

for y in [4, 5]:

l.append((x, y))

analogously

[(x, y) for x in [1, 2, 3] for y in [4, 5]]

• Later generators can reference variables from earlier generators
Prelude> [(x, y) | x <- [1..3], y <- [x..3]]

[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

“All pairs (x , y) such that x , y ∈ {1, 2, 3} and y ≥ x”

COMP2221—Session 4: Lists and Polymorphism 9

List comprehensions III: guards

• As well as binding variables to values with generators, we can

restrict the values using guards

• A guard can be any function that returns a Bool

• Guards and generators can be freely interspersed, but guards can

only refer to variables to their left

Prelude> [(x, y) | x <- [1..3], even x, y <- [x..3]]

[(2, 2), (2, 3)]

Prelude> [(x, y) | x <- [1..3], y <- [x..3], even x, even y]

[(2, 2)]

Prelude> [(x, y) | x <- [1..3], even x, even y, y <- [x..3]]

error: Variable not in scope: y :: Integer

COMP2221—Session 4: Lists and Polymorphism 10

Some examples

• Produce a list of all factors of some positive integer

factors :: Int -> [Int]

factors n = [x | x <- [1..n], n `mod` x == 0]

• For example

> factors 10

[1, 2, 5, 10]

• Now we can determine if a number is prime

prime :: Int -> Bool

prime n = factors n == [1, n]

• And use it to (very expensively) enumerate primes below a limit

primes :: Int -> [Int]

primes n = [x | x <- [2..n], prime x]

COMP2221—Session 4: Lists and Polymorphism 11

Polymorphism

Polymorphism

• Recall, Haskell is strictly typed.

• What does this mean for (say) length?

Different types?

length [True, False, True] -- :: [Bool] -> Int ?

length [1, 2, 3] -- :: [Int] -> Int ?

These functions must have different types, no?

Polymorphic types

Prelude> :type length

length :: [a] -> Int

“length eats a list of values of any type a and returns an Int”

a is called a type variable.

This is called parametric polymorphism.

COMP2221—Session 4: Lists and Polymorphism 12

Polymorphism

• Recall, Haskell is strictly typed.

• What does this mean for (say) length?

Different types?

length [True, False, True] -- :: [Bool] -> Int ?

length [1, 2, 3] -- :: [Int] -> Int ?

These functions must have different types, no?

Polymorphic types

Prelude> :type length

length :: [a] -> Int

“length eats a list of values of any type a and returns an Int”

a is called a type variable.

This is called parametric polymorphism.

COMP2221—Session 4: Lists and Polymorphism 12

Contrast with OO languages: defintions

Definition (Parametric polymorphism)

Write a single implementation of a function that applies generically and

identically to values of any type.

Definition (“ad-hoc” polymorphism)

Write multiple implementations of a function, one for each type you

wish to support.

Definition (Subtype polymorphism)

Relate datatypes by some “substitutability”. Write a function for a

supertype instance. Now all subtypes can use it. (see also “Liskov

substitution principle”)

COMP2221—Session 4: Lists and Polymorphism 13

Contrast with OO languages: examples

Subtype polymorphism
class Foo(object):

def length(self, ...):

pass

class Bar(Foo):

pass

a = Foo().length()

Every Bar is-a Foo, so we can

call the length method.

b = Bar().length()

Ad-hoc polymorphism
class Foo(object):

pass

class Bar(object):

pass

def length(obj):

if isinstance(obj, Foo):

...

elif isinstance(obj, Bar):

...

length knows how to handle things

of type Foo and type Bar

a = length(Foo())

b = length(Bar())

Parametric polymorphism

-- length doesn't care what type the entries

-- in the list are

length :: [a] -> Int

length [] = 0

length (_:xs) = 1 + length xs

COMP2221—Session 4: Lists and Polymorphism 14

Contrast with OO languages

• Parametric polymorphism also called generic programming

• Introduced in ML in 1975.

• Has been adopted by a number of languages, including traditional

OO ones.

• For example, Java or C# have “generics” for this purpose

// Implementation of HashSet is generic

// Specialised on instantiation

Set<Object> objset = new HashSet<Object>();

• C++ templates also allow for similar style of programming

COMP2221—Session 4: Lists and Polymorphism 15

Constraining polymorphic functions

• Some polymorphic functions only apply to types that satisfy certain

constraints

• For example (+) works on all types a, as long as that type is a

number type.

Example

(+) :: Num a => a -> a -> a

“For any type a that is an instance of the class Num of numeric types,

(+) has type a -> a -> a”

• This constraint is called a class constraint

• An expression or type with one or more such constraints is called

overloaded.

⇒ Num a => a -> a -> a is an overloaded type and (+) is an overloaded

function.

COMP2221—Session 4: Lists and Polymorphism 16

Haskell classes

Definition (Class)

A collection of types that support certain, specified, overloaded

operations called methods.

Definition (Instance)

A concrete type that belongs to a class and provides implementations of

the required methods.

COMP2221—Session 4: Lists and Polymorphism 17

Analogous constructs in other languages

• Compare: type “a collection of related values”

• This is not like subclassing and inheritance in Java/C++

• If you write flat interfaces with ‘abc.abstractmethod‘ in Python.

• Rust traits give you something close

• Close to a combination of Java interfaces and generics

• C++ “concepts” (in C++20) are also very similar.

COMP2221—Session 4: Lists and Polymorphism 18

Defining classes I

• Let us say we want to encapsulate some new property of types

Foo-ness

• We define the interface the type should support
class Foo a where

isfoo :: a -> Bool

• Now we say how types implement this
instance Foo Int where

isfoo _ = False

instance Foo Char where

isfoo c = c `elem` ['a'..'c']

• Can add new interfaces to old types, and new types to old interfaces.

• Contrast Java, where if I implement a new interface it is very

difficult to make existing classes implement it.

COMP2221—Session 4: Lists and Polymorphism 19

Defining classes II

• Classes (interfaces) can provide default implementation.

• Example, the Eq class representing equality requires both (==) and

(/=).

• Since a == b ⇔ not (a /= b), we can provide default

implementations and only require that an instance implements one.
class Eq a where

(==) :: a -> a -> Bool

x == y = not (x /= y)

(/=) :: a -> a -> Bool

x /= y = not (x == y)

-- instance for MyType only needs to provide one of (==) or (/=).

instance Eq MyType where

x == y = ...

COMP2221—Session 4: Lists and Polymorphism 20

Summary

• Saw how the literal list syntax translates into construction with (:)

• Discussed complexity of common list operations

• Made connection to pattern matching of lists

• Introduced list comprehensions as analogous to set notation

• Saw how nested comprehensions and guards work

• Saw how Haskell implements polymorphism through generic

functions
-- length operates on a list of any type a

-- and returns an Int

length :: [a] -> Int

• Saw how overloading works with class constraints and type classes
-- sort sorts any list of things of type a,

-- as long as that type is orderable

sort :: Ord a => [a] -> [a]

COMP2221—Session 4: Lists and Polymorphism 21

	Lists: pattern matching
	Lists: comprehensions
	Polymorphism

