AR
P Durham

University

Session 3: Functions

COMP2221: Functional programming

Laura Morgenstern

laura.morgenstern@durham.ac.uk

COMP2221—Session 3: Functions

e Defined and motivated types

e Different concepts of typing (dynamic/static)
e Static vs. dynamic type checking

e Type checking mechanisms

e Considered basic data types in Haskell

® Bool
® Int, Integer, Double

® Char
e Defined lists [a] and tuples (a, b, ¢)

e Used tuples and lists to model functions with multiple input
parameters

COMP2221—Session 3: Functions 2

Functions have types

e Functions have types in all programming languages, Haskell makes
this particularly explicit

Functions of one argument “unary”

Map from one type to another

not :: Bool —-> Bool

Functions of two arguments “binary”
Map from two types to another

add :: (Int, Int) -> Int

COMP2221—Session 3: Functions 3

An alternative way to define binary functions

e Since functions are first class objects, functions of more than one
argument are typically written in Haskell as functionals

e Functionals are functions that return other functions

e Naturally extends from binary to n-ary functions

COMP2221—Session 3: Functions 4

“Curried” view of binary functions

add :: Int -> (Int -> Int)

“add takes an Int and returns a function which takes an Int and returns

an Int”

Definition (Currying (informal))
Turning a function of n arguments into a function of n — 1 arguments.

COMP2221—Session 3: Functions

Excursus: history of currying

Idea first introduced by Gottlob Frege

Developed by Moses Schonfinkel in the context of combinatory logic

Further extended by Haskell Brooks Curry working in logic and
category theory

e Name “currying” coined by Christopher Strachey (1967)

COMP2221—Session 3: Functions 6

Demo time

Let's look at currying in Haskell

COMP2221—Session 3: Functions

Currying conventions

e (Almost) all functions in Haskell are written in curried form

= To avoid messy syntax, this leads to associativity rules for -> and
function application.

-> associates to the right

Int -> Int -> Int -> Int
-— Means
Int -> (Int -> (Int -> Int))

Function application associates to the left

mult x y z
-- Means
((mult x) y) z

COMP2221—Session 3: Functions 8

Purpose of currying

e FEasier to reason about and prove things with functions of only one
variable

e Flexibility in programming: makes composing functions simpler

e Related to partial evaluation where we bind some variables in an
n-ary function to a value

= Currying allows for functions with multiple arguments in languages
that only support unary functions such as Haskell and the Lambda
Calculus

COMP2221—Session 3: Functions 9

Lambda expressions in Haskell

Nameless functions

e As well as giving functions names, we can also construct them
without names using lambda expressions
-— The nameless function that takes
-— a number T and returns T + T

\x -> x + X

e Use of \ for nameless functions comes from lambda calculus, which
is a theory of functions.

e There is a whole formal system on reasoning about computation
using A calculus (developed by Alonzo Church in the 1930s) = a
different course

e It is also a way of formalising the idea of lazy evaluation (on which
more later)

COMP2221—Session 3: Functions 10

Use cases for unnamed functions |

e Formalises idea of functions defined using currying
add x y =x +y
-— Equivalently
add = \x > (\y > x + y)
e The latter form emphasises the idea that add is a function of one
variable that returns a function
e Also useful when returning a function as a result
const :: a > b -> a
const x _ = X
-- Or, perhaps more naturally
const x = _ —> x
“const eats an a and returns a function which eats a b and always
returns the same a.”

COMP2221—Session 3: Functions 11

Use cases for unnamed functions Il

e What good is a function which always returns the same value?
e Often when using higher-order functions, we need a base case that
always returns the same value.
length' :: [a] -> Int
length' xs = sum (map (const 1) xs)
“The length of a list can be obtained by summing the result of

calling const 1 on every item in the list”

o We will see some more of this when we look at higher order
functions.

COMP2221—Session 3: Functions 12

Use cases for unnamed functions IlI

e Also useful where the function is only used once
-- Generate the first n positive odd numbers
odds :: Int -> [Int]
odds n = map £ [0..n-1]
where
fx=x%x2+1
e Can be simplified (removing the where clause)
odds :: Int -> [Int]
odds n = map (\x -> x*2 + 1) [0..n-1]

COMP2221—Session 3: Functions 13

Translating between the two forms

e |t is always possible to translate between named functions and
arguments, and the approach using A expressions of one argument

e Just move the arguments to the right hand side and put it inside a

A, repeat with remainder until you're done.
fabc= ...
—-- Move formal arguments to right hand side with a lambda
f=\abc-—> ...
-- move remaining arguments into new lambdas
f=\a->0Nb-—>CNc-—>...))

e Which option fits more naturally is often a style choice

COMP2221—Session 3: Functions 14

Function syntax conventions

Syntax conventions

e Function application is so important that it is written as quietly as
possible: with whitespace

e All functions can be called in prefix form:
“foo a b, not “a foo b”’

e ... but, special syntax for binary functions.

COMP2221—Session 3: Functions 15

Binary functions: infix notation

Infix notation

All binary functions (which have type a -> b -> ¢) can be written as
infix functions.

Symbol only names

Names consisting only of symbols (e.g. +, *)
1+ 2 -- infiz notation
(+) 1 2 -- prefiz notation

False && True -- infiz notation
(&%) False True -- prefiz notation

“Normal” names

Names with alpha-numeric characters (e.g. div, mod)

mod 3 2 -- prefiz notation
3 "mod” 2 -- infiz notation using backticks

COMP2221—Session 3: Functions 16

e Learned that functions have types

e Discussed currying as a manner to define functions with multiple
arguments

e Introduced the lambda calculus and the idea of anonymous functions
e Saw syntax for these A\ expressions in Haskell

e And how they can formalise (or make it easier to read) curried

functions:
add x y =x +y
-- vs
add = \x > (\y -> x + y)

e Considered infix and prefix notation

COMP2221—Session 3: Functions 17

	Lambda calculus
	Lambda expressions in Haskell
	Function syntax conventions

