
Session 3: Functions

COMP2221: Functional programming

Laura Morgenstern

laura.morgenstern@durham.ac.uk

COMP2221—Session 3: Functions 1

Recap

• Defined and motivated types

• Different concepts of typing (dynamic/static)

• Static vs. dynamic type checking

• Type checking mechanisms

• Considered basic data types in Haskell

• Bool

• Int, Integer, Double

• Char

• Defined lists [a] and tuples (a, b, c)

• Used tuples and lists to model functions with multiple input

parameters

COMP2221—Session 3: Functions 2

Functions have types

• Functions have types in all programming languages, Haskell makes

this particularly explicit

Functions of one argument “unary”

Map from one type to another

not :: Bool -> Bool

Functions of two arguments “binary”

Map from two types to another

add :: (Int, Int) -> Int

COMP2221—Session 3: Functions 3

An alternative way to define binary functions

• Since functions are first class objects, functions of more than one

argument are typically written in Haskell as functionals

• Functionals are functions that return other functions

• Naturally extends from binary to n-ary functions

COMP2221—Session 3: Functions 4

Currying

“Curried” view of binary functions

add :: Int -> (Int -> Int)

“add takes an Int and returns a function which takes an Int and returns

an Int”

Definition (Currying (informal))

Turning a function of n arguments into a function of n − 1 arguments.

COMP2221—Session 3: Functions 5

Excursus: history of currying

• Idea first introduced by Gottlob Frege

• Developed by Moses Schönfinkel in the context of combinatory logic

• Further extended by Haskell Brooks Curry working in logic and

category theory

• Name “currying” coined by Christopher Strachey (1967)

COMP2221—Session 3: Functions 6

Demo time

Let’s look at currying in Haskell

COMP2221—Session 3: Functions 7

Currying conventions

• (Almost) all functions in Haskell are written in curried form

⇒ To avoid messy syntax, this leads to associativity rules for -> and

function application.

-> associates to the right

Int -> Int -> Int -> Int

-- Means

Int -> (Int -> (Int -> Int))

Function application associates to the left

mult x y z

-- Means

((mult x) y) z

COMP2221—Session 3: Functions 8

Purpose of currying

• Easier to reason about and prove things with functions of only one

variable

• Flexibility in programming: makes composing functions simpler

• Related to partial evaluation where we bind some variables in an

n-ary function to a value

⇒ Currying allows for functions with multiple arguments in languages

that only support unary functions such as Haskell and the Lambda

Calculus

COMP2221—Session 3: Functions 9

Lambda expressions in Haskell

Nameless functions

• As well as giving functions names, we can also construct them

without names using lambda expressions

-- The nameless function that takes

-- a number x and returns x + x

\x -> x + x

• Use of λ for nameless functions comes from lambda calculus, which

is a theory of functions.

• There is a whole formal system on reasoning about computation

using λ calculus (developed by Alonzo Church in the 1930s) ⇒ a

different course

• It is also a way of formalising the idea of lazy evaluation (on which

more later)

COMP2221—Session 3: Functions 10

Use cases for unnamed functions I

• Formalises idea of functions defined using currying

add x y = x + y

-- Equivalently

add = \x -> (\y -> x + y)

• The latter form emphasises the idea that add is a function of one

variable that returns a function

• Also useful when returning a function as a result

const :: a -> b -> a

const x _ = x

-- Or, perhaps more naturally

const x = _ -> x

“const eats an a and returns a function which eats a b and always

returns the same a.”

COMP2221—Session 3: Functions 11

Use cases for unnamed functions II

• What good is a function which always returns the same value?

• Often when using higher-order functions, we need a base case that

always returns the same value.

length' :: [a] -> Int

length' xs = sum (map (const 1) xs)

“The length of a list can be obtained by summing the result of

calling const 1 on every item in the list”

• We will see some more of this when we look at higher order

functions.

COMP2221—Session 3: Functions 12

Use cases for unnamed functions III

• Also useful where the function is only used once

-- Generate the first n positive odd numbers

odds :: Int -> [Int]

odds n = map f [0..n-1]

where

f x = x*2 + 1

• Can be simplified (removing the where clause)

odds :: Int -> [Int]

odds n = map (\x -> x*2 + 1) [0..n-1]

COMP2221—Session 3: Functions 13

Translating between the two forms

• It is always possible to translate between named functions and

arguments, and the approach using λ expressions of one argument

• Just move the arguments to the right hand side and put it inside a

λ, repeat with remainder until you’re done.
f a b c = ...

-- Move formal arguments to right hand side with a lambda

f = \a b c -> ...

-- move remaining arguments into new lambdas

f = \a -> (\b -> (\c -> ...))

• Which option fits more naturally is often a style choice

COMP2221—Session 3: Functions 14

Function syntax conventions

Syntax conventions

• Function application is so important that it is written as quietly as

possible: with whitespace

• All functions can be called in prefix form:

“foo a b”, not “a foo b”

• . . . but, special syntax for binary functions.

COMP2221—Session 3: Functions 15

Binary functions: infix notation

Infix notation

All binary functions (which have type a -> b -> c) can be written as

infix functions.

Symbol only names

Names consisting only of symbols (e.g. +, *)

1 + 2 -- infix notation

(+) 1 2 -- prefix notation

False && True -- infix notation

(&&) False True -- prefix notation

“Normal” names

Names with alpha-numeric characters (e.g. div, mod)

mod 3 2 -- prefix notation

3 `mod` 2 -- infix notation using backticks

COMP2221—Session 3: Functions 16

Summary

• Learned that functions have types

• Discussed currying as a manner to define functions with multiple

arguments

• Introduced the lambda calculus and the idea of anonymous functions

• Saw syntax for these λ expressions in Haskell

• And how they can formalise (or make it easier to read) curried

functions:
add x y = x + y

-- vs

add = \x -> (\y -> x + y)

• Considered infix and prefix notation

COMP2221—Session 3: Functions 17

	Lambda calculus
	Lambda expressions in Haskell
	Function syntax conventions

