
Session 1: Introduction

COMP2221: Functional programming

Laura Morgenstern

laura.morgenstern@durham.ac.uk

COMP2221—Session 1: Introduction 1



Course organisation: methods

Lectures

• 10 lectures overall

• 2 per week

• Start with brief recap

• Finish with quick quiz

Practicals

• Programming requires practice

• Tackle exercises yourself (before the practical session) first

• Your chance to ask questions and get feedback

• First practicals start on Monday, the 16th of January

⇒ Lecture slides, recordings and exercises are hosted at

https://comp2221.github.io/fp-website/

COMP2221—Session 1: Introduction 2

https://comp2221.github.io/fp-website/


Course organisation: literature

• Course mainly follows Graham Hutton’s Programming in Haskell

(2016)

• Available at the library

• Slides for the first 10 chapters are available at

http://www.cs.nott.ac.uk/~pszgmh/pih.html

COMP2221—Session 1: Introduction 3

http://www.cs.nott.ac.uk/~pszgmh/pih.html


Course organisation: assessment

• By exam

• Knowledge and comprehension: How do things work in Haskell?

Why do they work?

• Application: What does some code do? Can you write code to solve

problem X?

• Evaluation: What are the underlying concepts? What properties

does a solution have?

• Past papers available and sample paper will be provided

COMP2221—Session 1: Introduction 4



Course organisation: questions

• Discussion forum for questions:

https://github.com/comp2221/fp-website/discussions

• Happy to take them in live sessions

COMP2221—Session 1: Introduction 5

https://github.com/comp2221/fp-website/discussions


What is functional programming?

• A programming paradigm where the building block of computation

is the application of functions to arguments.

• Functional programs specify a data-flow to describe what

computations should proceed

• Algebraic programming style dominated by function application and

composition

COMP2221—Session 1: Introduction 6



In contrast, what is imperative programming?

• A programming paradigm where the building block of computation

is the modification of stored values.

• Imperative programs specify a control-flow to describe how

computations should proceed

• Algorithmic programming style dominated by variable assignments,

loops, conditional statements

COMP2221—Session 1: Introduction 7



Effectful vs. pure functions

y1 = f(1)

y2 = f(1)

Will y1 == y2? How could it not?

If f has some internal state that affects the answer:

state = 0

def f(n):

global state

state += 1

return n + state

print(f(1)) => "2"

print(f(1)) => "3"

Definition (Side effect)

A side effect is a (hidden) state change that results from a function

modifying or relying upon objects external to its parameter list.

COMP2221—Session 1: Introduction 8



Effectful vs. pure functions

y1 = f(1)

y2 = f(1)

Will y1 == y2? How could it not?

If f has some internal state that affects the answer:

state = 0

def f(n):

global state

state += 1

return n + state

print(f(1)) => "2"

print(f(1)) => "3"

Definition (Side effect)

A side effect is a (hidden) state change that results from a function

modifying or relying upon objects external to its parameter list.

COMP2221—Session 1: Introduction 8



Effectful vs. pure functions

Definition (Pure function)

A pure function is a function that takes all its inputs as arguments and

produces all its outputs as results.

⇒ A pure function is a function without side effects

COMP2221—Session 1: Introduction 9



What is a functional programming language?

A functional programming language:

• Supports and encourages a programming style with function

application and composition as basic building blocks

• Forbids variable assignment and side effects ⇒ “Pure functional”

• Makes reasoning about code simpler (for humans and compilers)

Why are C/Java/Python not functional programming languages?

3 It is indeed possible to write in a functional style in these

languages. . .

7 but they do not enforce it.

7 Moreover, the language-level support is weak.

3 In contrast, Haskell is a purely functional (side effect free) language,

and built from scratch for functional programming.

COMP2221—Session 1: Introduction 10



Example: computing n!

Imperative style

factorial = 1

for i in range(1, n+1):

factorial = factorial * i

Functional style

Fn =

{
1 n = 1

nFn−1 otherwise

def factorial(n):

if n == 1:

return 1

else:

return n * factorial(n-1)

Which implementation maps more naturally onto a computer?

Which implementation is more convenient for the programmer?

COMP2221—Session 1: Introduction 11



Excursion: Why high-level

programming languages?



Abstracting from the machine

Pseudo machine-code

b = a + 3

mov addr_a, reg1 ## Load address of a into a reg1

add 3, reg1, reg2 ## add 3 to reg1 and write into reg2

mov reg2, addr_b ## write reg2 to address of b.

Good enough in the 1950s

3 Explicit about what is going on

7 Obfuscates algorithm from implementation

7 Not portable

7 Not easy to modify

7 Not succint

COMP2221—Session 1: Introduction 12



High-level Programming languages

• Allow writing code to an abstract machine model

• A translator of some kind (perhaps a compiler) transforms this code

into something that executes on a machine

⇒ this machine can either be a physical processor

⇒ a virtual machine (e.g. Java JVM)

• or a “hybrid”: they do just-in-time compilation (e.g. Java JIT)

Source Code

Interpreter

Machine code

On-the-fly

Compiler

Intermediate code

Interpreter

Machine code

On-the-fly

Once

Compiler

Machine code

Once for each architecture

COMP2221—Session 1: Introduction 13



Programming languages

• Microarchitecture just processes an instruction stream

• Not easy to program complex algorithms in such a “language” (C is

arguably quite close)

⇒ Use abstractions leading to high level languages

• Features driven by programming paradigm considerations, domain

knowledge, wanting to target particular hardware, . . .

• Compiler or interpreter maps this language onto machine instructions

• We therefore need a formal specification of the input

⇒ languages to define the syntax and semantics of their output

Functional programming languages don’t map directly onto current

hardware. A Haskell interpreter (or compiler) thus maps from one

paradigm to the other.

COMP2221—Session 1: Introduction 14



Haskell taster

Functional style

Fn =

{
1 n = 1

nFn−1 otherwise

-- Compute the factorial of an integer

fac :: Int -> Int

fac 1 = 1

fac n = n * fac (n - 1)

• Semantics of complex code fragments is given implicitly: reader has

to reconstruct it

• We can think about how to write it for humans to understand

• Comments (or literate programming) can help

COMP2221—Session 1: Introduction 15



Haskell environment

Development environment

• GHC (Glasgow Haskell Compiler) can be used as an interpreter ghci

and compiler ghc

• Available freely from www.haskell.org/download

• De-facto standard implementation

Standard library

• Ease of use of languages often determined by standard library

• Haskell has a large standard library, and is particularly strong

manipulating lists

• In practicals, you will redo some of its functionalities for practice

purposes

COMP2221—Session 1: Introduction 16

www.haskell.org/download


Demo time

COMP2221—Session 1: Introduction 17



Summary

Content:

• Defined basic terms; functional style, side effects, pure functions,

functional programming language

• Looked at toy problem from both a functional and imperative point

of view

• Classified translation of language to executable into interpreted and

compiled

• Haskell syntax for function application, naming and layout rules

• List operations of prelude

Self-study:

• Setup your Haskell programming environment, e.g. via

https://comp2221.github.io/fp-website/setup/

• Tackle exercise 1

https:

//comp2221.github.io/fp-website/exercises/exercise1/
COMP2221—Session 1: Introduction 18

https://comp2221.github.io/fp-website/setup/
https://comp2221.github.io/fp-website/exercises/exercise1/
https://comp2221.github.io/fp-website/exercises/exercise1/

	Excursion: Why high-level programming languages?

