
Session 11: Revision
COMP2221: Functional Programming

Laura Morgenstern*, Lawrence Mitchell

*laura.morgenstern@durham.ac.uk

COMP2221—Session 11: Revision 1



Reminder



Exam I

Exam assesses

• knowledge and comprehension: how do things work in Haskell, why do
they work, …

• application: what does some code do; can you write code to solve
problem X…

• evaluation: what are the concepts; what properties does some solution
have…

Remarks

• Practice via problem sheets (will cover programming knowledge)
• Types are important: always write types in code
• Theory, methodology, concepts from lectures are also relevant
• Please use exact terminology (definitions)

COMP2221—Session 11: Revision 2



Exam II

By its nature, cannot be exhaustive.

Past and model papers a good guide. Broadly they cover these types of
questions:

• Can you write/read (short) Haskell functions? Type annotations, class
constraints, pattern matching, guard expressions, conditionals.

• Can you use list-based functions from the standard library? head, tail,
length, map, comprehensions, …

• Can you explain/define key terms? Types of polymorphism, currying, side
effects, higher order functions, …

• Can you explain/describe differences in different programming paradigms?
Functional/imperative, pure/impure (side effects/side effect free), lazy
evaluation lazy/strict, …

• Can you implement/describe simple type class interfaces and their utility?
Properties and requirements of the builtin type classes we covered Num, Ord,
Functor, …

COMP2221—Session 11: Revision 3



Topics

• Functional vs. imperative
• Builtin types and function types
• Syntax: conditional expressions, guard equations, pattern matching
• Polymorphism: parametric (“generic functions”) vs. method
overloading/subclassing. Class constraints
(+) :: Num a => a -> a -> a

• Lists and pattern matching, list comprehensions.
• Recursion classification, writing recursive functions
• Maps and folds, higher order functions, foldr, foldl
• User-defined data types data
• More type classes Functor (mappable things), Foldable
• Reducible expressions
• Evaluation strategies

COMP2221—Session 11: Revision 4



Concepts

We covered various concepts and structured ideas for programs and types.

Can you explain, or describe, how these might help with (or hinder) writing
correct programs?

COMP2221—Session 11: Revision 5



Some common errors

• Recursion without a base case
reverse' :: [a] -> [a]
-- Missing equation for empty list
reverse' (x:xs) = (reverse' xs) ++ [x]

• Incorrect syntax when pattern matching lists
reverse' :: [a] -> [a]
reverse' [] = []
-- Not a valid pattern, use (x:xs)
reverse' [x:xs] = ...

• Patterns or guard equations in wrong order
sign :: Num a => a -> Int
sign a | a == 0 = 0

| otherwise = -1
-- This case never reached
| a > 0 = 1

not' :: Bool -> Bool
not' _ = False
-- Never reached, _ matches everything
not' False = True

COMP2221—Session 11: Revision 6



Type classes

• Basic type classes Eq, Num, Ord, …capture simple properties of types.
Used to provide interfaces.

• More complex properties are also captured by a sequence of type
classes. We saw Functor for mappable types and Foldable for foldable
types.

• Important when implementing instances that the methods you
implement obey the required rules, e.g. Functor laws.

⇒ often done by showing (proving) that your implementation obeys them.

COMP2221—Session 11: Revision 7



Relevant exam papers

2022 Model exam all questions
2021 All questions
2020 Q1 and Q2
2019 Q2 (the single Haskell question)
2018 Q1 (c–e, g) (not (a), (b), (f))
2017 Q1 and Q2. These are mostly programming questions that should be

doable if you have looked at the practicals.
2016 Q1 (a, c, e, g, h), Q2 (a, b, d, e)

COMP2221—Session 11: Revision 8



Questions

• Discussion forum
• Practical sessions
• Email to laura.morgenstern@durham.ac.uk
• Consulation during open office hours or by appointment

COMP2221—Session 11: Revision 9


	Reminder

