Session 11: Revision
COMP2221: Functional Programming

Laura Morgenstern”, Lawrence Mitchell

“laura.morgenstern@durham.ac.uk

COMP2221—Session 11: Revision



Reminder



Exam |

Exam assesses

- knowledge and comprehension: how do things work in Haskell, why do
they work, ...

- application: what does some code do; can you write code to solve
problem X...

- evaluation: what are the concepts; what properties does some solution
have...

Remarks
- Practice via problem sheets (will cover programming knowledge)
- Types are important: always write types in code
- Theory, methodology, concepts from lectures are also relevant
- Please use exact terminology (definitions)

COMP2221—Session 11: Revision 2



Exam Il

By its nature, cannot be exhaustive.

Past and model papers a good guide. Broadly they cover these types of
questions:

- Can you write/read (short) Haskell functions? Type annotations, class
constraints, pattern matching, guard expressions, conditionals.

- Can you use list-based functions from the standard library? head, tail,
length, map, comprehensions, ...

- Can you explain/define key terms? Types of polymorphism, currying, side
effects, higher order functions, ...

- Can you explain/describe differences in different programming paradigms?
Functional/imperative, pure/impure (side effects/side effect free), lazy
evaluation lazy/strict, ...

- Can you implement/describe simple type class interfaces and their utility?
Properties and requirements of the builtin type classes we covered Num, Ord,
Functor, ...

COMP2221—Session 11: Revision 3



- Functional vs. imperative

- Builtin types and function types

- Syntax: conditional expressions, guard equations, pattern matching

- Polymorphism: parametric (“generic functions”) vs. method
overloading/subclassing. Class constraints
(+) :: Numa =>a ->a -> a

- Lists and pattern matching, list comprehensions.

- Recursion classification, writing recursive functions

- Maps and folds, higher order functions, foldr, foldl

- User-defined data types data

- More type classes Functor (mappable things), Foldable

- Reducible expressions

- Evaluation strategies

COMP2221—Session 11: Revision 4



We covered various concepts and structured ideas for programs and types.

Can you explain, or describe, how these might help with (or hinder) writing
correct programs?

COMP2221—Session 11: Revision 5



Some common errors

- Recursion without a base case
reverse' :: [a] -> [a]
-- Missing equation for empty list
reverse' (x:xs) = (reverse' xs) ++ [x]

- Incorrect syntax when pattern matching lists

reverse' :: [a] -> [a]

reverse' [] = []

-- Not a valid pattern, use (x:xs)
reverse' [x:xs] = ...

- Patterns or guard equations in wrong order

sign :: Num a => a -> Int

sign al a-== =0 not' :: Bool -> Bool
| otherwise = -1 not’ _ = False '
-- This case never reached -- Never reached, _ matches everything
| a>0 =1 not' False = True

COMP2221—Session 11: Revision 6



Type classes

- Basic type classes Eq, Num, Ord, ...capture simple properties of types.
Used to provide interfaces.

- More complex properties are also captured by a sequence of type
classes. We saw Functor for mappable types and Foldable for foldable
types.

- Important when implementing instances that the methods you
implement obey the required rules, e.g. Functor laws.

= often done by showing (proving) that your implementation obeys them.

COMP2221—Session 11: Revision 7



Relevant exam papers

2022 Model exam all questions

2021 All questions

2020 Q1and Q2

2019 Q2 (the single Haskell question)
2018 Q1 (c-e, g) (not (a), (b), (F))

2017 Q1 and Q2. These are mostly programming questions that should be
doable if you have looked at the practicals.

2016 Q1(a, ¢, e, g h), Q2 (a, b, d, e)

COMP2221—Session 11: Revision 8



Questions

- Discussion forum

- Practical sessions

- Email to laura.morgenstern@durham.ac.uk

- Consulation during open office hours or by appointment

COMP2221—Session 11: Revision 9



	Reminder

