AR
W Durham

University

Session 9: Type-driven design

COMP2221: Functional programming

Lawrence Mitchell”

“lawrence.mitchell@durham.ac.uk

COMP2221—Session 9: Type-driven design

Introduction

- Haskell offers easy use of quite sophisticated types
- Will discuss some ways of thinking about APl design
- Goal is to think about APIs that enforce compile-time correct use

= Influence the way you write code in all languages

B R R WESUE A W

COMP2221—Session 9: Type-driven design 2

Correct merging?

UVJLjﬁ”& e wkksy' @ﬁ&bﬂ~

e C g v ~
Spot the bug A RS Wy Y X
mergeBy :: (a -> a -> Ordering) -> [a] -> [a] -> [a]
mergeBy _ [] ys = ys
mergeBy _ xs [] = xs

mergeBy cmp (x:xs) (y:ys)
| cmp x y == LT = X : mergeBy cmp xs (y:ys)
| otherwise =y : mergeBy cmp (Xx:xs) ys

COMP2221—Session 9: Type-driven design 3

Correct merging?

Spot the bug

mergeBy :: (a -> a -> Ordering) -> [a] -> [a] -> [a]
mergeBy _ [] ys = ys
mergeBy _ xs [] = xs

mergeBy cmp (x:xs) (y:ys)
| cmp x y == LT = X : mergeBy cmp xs (y:ys)
| otherwise =y : mergeBy cmp (Xx:xs) ys

nly correct if xs and ys were both sorted using cmp!
EN wg\M Ghe o cted ol J’ﬁa
L Ak b &m ey

1
§ o
COMP2221—Session 9: Type-driven design /7 S &mﬂ\{) \’2&%} C 3

Secure web connections? |

TLS handshake

Client
Server

G B
—— |

SYN Fl—~——--"-""-""-""-"""""""="="=-"="="="=-"=-"=---
——————————————————————————— -1 SYN ACK
ACK S
A _ _ _ o ______ 3 (@)
o
ClientHello \
ServerHello
——————————————————————————— - Certificate
ServerHelloDone
ClientKeyExchange =2
ChangeCipherSpec - |- ----------------"-~-~------- of
Finished é (73
___________________________ _ . ChangeCipherSpec
Finished

https://www.cloudflare.com/en-gb/learning/ssl/
COMP2221—Session 9: Type-driven design what-happens-in-a-tls-handshake/ 4

https://www.cloudflare.com/en-gb/learning/ssl/what-happens-in-a-tls-handshake/
https://www.cloudflare.com/en-gb/learning/ssl/what-happens-in-a-tls-handshake/

Secure web connections? Il

TLS handshake for web security: RSA key exchange

1. The ‘client hello’ message: [...]. The message will include [...], and
a string of random bytes known as the “client random.”

2. The ‘premaster secret: The client sends one more random
string of bytes, [...] encrypted with the server’s public key [...]

COMP2221—Session 9: Type-driven design 5

Secure web connections? Il

TLS handshake for web security: RSA key exchange

1. The ‘client hello’ message: [...]. The message will include [...], and
a string of random bytes known as the “client random.”

2. The ‘premaster secret: The client sends one more random
string of bytes, [...] encrypted with the server’s public key [...]

What if we forget these things?

COMP2221—Session 9: Type-driven design 5

What might an API look like?

Simple Python API

def open(address):
return open_socket(address)
def receive(socket, n):
return socket.read(n)
def send(socket, msg):
return socket.write(len(msg), msg)

COMP2221—Session 9: Type-driven design 6

A first go

Client

SYN S oo oo

ACK

ClientHello

ClientKeyExchange
ChangeCipherSpec - |- - - - - -----
Finished

COMP2221—Session 9: Type-driven design

s = open(address)

s = send(s, "syn")
ack = receive(s,)

Send hello

s = send(s, "hello" +
Get server cert
cert = receive(s,)
s = send(s, "secret")

syn
ack

random())

oops!

What went wrong?

- Our API has no way of enforcing valid state

- Typical approach to solve this: sprinkle some
assertions/validation through the code

= antipattern since can easily forget things

COMP2221—Session 9: Type-driven design 8

What went wrong?

- Our API has no way of enforcing valid state

- Typical approach to solve this: sprinkle some
assertions/validation through the code

= antipattern since can easily forget things

Better approach
Build the state into the type system, only implement methods on

states that allow them.

COMP2221—Session 9: Type-driven design

The TLS handshake again

class Conn: conn = Conn(open(address))
def send_hello(self): .send_hello()
return OpenConn(self.sock, # API requires we
self.sock.send(...)) # call this
class OpenConn: .receive_cert()
def receive_cert(self): # before calling this
return ConnWithCert(self.sock, .send_premaster()

self.sock.recv(...))
class ConnWithCert:
def send_premaster(self):
return ConnWithPremaster(self.sock,
self.sock.send(...))

COMP2221—Session 9: Type-driven design 9

N !Auv'b& e Ad e [()J\MU’

</ < < ("Her A

- In Python incorrect method chaining will only be caught at
runtime

c kb

- ..Still better than security holes!
- ldea is to encode state of program in the types

- In statically-typed languages this can be caught at compile time.

This method-chaining pattern is a very popularpde}ign pattern

called a fluent interface. (1605 [MR Lerw(ag
L .-
You've doubtless seen it in any javascript library you've used.

COMP2221—Session 9: Type-driven design 10

Parse, don’t validate

- Another place where type-driven design arises is consuming
“unstructured” data from the outside world and turning it into
something structured

- Prototype might be stream of bytes into JSON

- Two broad options for checking “invalid” data

1. validation: assert data are well-formed (as side-effect)
2. parse-and-continue: assert data are well-formed and return new

type

COMP2221—Session 9: Type-driven design 1

What's the difference?

- Validation validate :: SomeData -> () can be elided
- Parsing parse :: Unstructured -> Structured cannot

= the conclusions of validation “these data are now valid” cannot
be encoded in the type

- Can't guarantee downstream correctness

e

COMP2221—Session 9: Type-driven design 12

Prototype: a safe head

o

4

CC

"Wx

i

safeHead :: [a] -> Maybe a
safeHead (x:_) = Just x
safeHead _ = Nothing

-- Or

data NonEmpty a = Cons a [a]

nonEmpty ::
nonEmpty [] = Nothing

AR

) =
L‘\U\A [/) = emor
oo (=) =

A ek
@%

[a] -> Maybe (NonEmpty a)

nonEmpty (x:xs) = Just (NonEmpty x xs)

nonEmptyHead ::

nonEmptyHead (Cons x _) = X

> ol e

COMP2221—Session 9: Type-driven design

NonEmpty a -> a

o\fguv

| et 0
ke

13

What's the difference

- Suppose we are parsing a list which might be empty, and want
to check that case and then pass it on.

- nonEmpty constructor does the checking, and then delivers a
type that is provably non-empty

= don’t need to check again!
- safeHead approach forces us to always check (because we only
have a [a])

Moral

Encode refinements from validation in the types.

Any check that is required to pass for a program to proceed with
valid data should not be a “side condition”.

COMP2221—Session 9: Type-driven design 14

Back to merging

mergeBy :: (a -> a -> Ordering) -> [a] -> [a] -> [a]
mergeBy _ [] ys = ys
mergeBy _ xs [] =
mergeBy cmp (x:xs) (y:ys)
| cmp x y == LT = x : mergeBy cmp xs (y:ys)
| otherwise =y : mergeBy cmp (x:Xxs) ys

The bug here is rather hard to handle. Want a type

mergeBy ::
({a -> a -> Ordering} cmp) -- Name this parameter
-> SortedBy cmp [a] — (& + (ﬁﬁcéQ

-> SortedBy cmp [a] b .
-> SortedBy cmp [a] j 20
This is just about possible in Haskell 2010, neid more ioph|st|cated
types than what we've seen (see < Lwds Jw

https://kataskeue.com/gdp.pdf if you're keen) &‘V
C
W

COMP2221—Session 9: Type-driven design 15

https://kataskeue.com/gdp.pdf

Concluding remarks

- This is a somewhat philosophical set of slides

- | think that thinking about types and the invariants they capture
IS a good way to design APIs.

- If you do this, you will be better than 99% of web framework
developers.

- Many places to go for further reading, ideas here, these are
some nice ones

- Parse, don't validate https://lexi-lambda.github.io/
blog/2019/11/05/parse-don-t-validate/

- Type state patterns
http://cliffle.com/blog/rust-typestate/

- Ghosts of departed proofs https://kataskeue.com/gdp.pdf

- An introduction to formal methods and proof automation
https://dependenttyp.es/classes/598sp2022.html

COMP2221—Session 9: Type-driven design 16

https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
http://cliffle.com/blog/rust-typestate/
https://kataskeue.com/gdp.pdf
https://dependenttyp.es/classes/598sp2022.html

