
Session 8: Lazy evaluation
COMP2221: Functional programming

Lawrence Mitchell*

*lawrence.mitchell@durham.ac.uk

COMP2221—Session 8: Lazy evaluation 1

Recap

• Saw type and data declarations
• Discussed difference between sum and product types
• Saw some more on type classes
• Functor as a type class for mappable containers
• Functor laws

• fmap id == id
• fmap (f . g) == fmap f . fmap g
• How to prove this for a datatype (inductively, or by exhaustive
enumeration [see also exercises]).

• Discussed why one might want to implement type class
instances for our data types

COMP2221—Session 8: Lazy evaluation 2

Lazy evaluation

How does this work?

Fibonacci sequence

F0 = 0
F1 = 1
Fn = Fn�1 + Fn�2

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
Prelude> take 10 fibs
[0,1,1,2,3,5,8,13,21,34]

How long?
def slow_function(a):

... # 5 minute computation

def compute(a, b):
if a == 0:

return 1
else:

return b

compute(0, slow_function(0))
compute(1, slow_function(1))

slow_function :: Int -> Int
-- 5 minute computation
slow_function a = ...

compute :: Int -> Int -> Int
compute a b | a == 0 = 1

| otherwise = b

compute 0 (slow_function 0)
compute 1 (slow_function 1)

COMP2221—Session 8: Lazy evaluation 3

Twell
RowC

Tue orslowC

Lazy evaluation: AKA I’ll get it when you ask

• Not only is Haskell a pure functional language
• It is also evaluated lazily
• Hence, we can work with infinite data structures
• …and defer computation until such time as it’s strictly necessary

Definition (Lazy evaluation)
Expressions are not evaluated when they are bound to variables.
Instead, their evaluation is deferred until their result is needed by
other computations.

COMP2221—Session 8: Lazy evaluation 4

Evaluation strategies

• Haskell’s basic method of computation is application of
functions to arguments

• Even here, though we already have some freedom

Example
inc :: Int -> Int
inc n = n + 1

inc (2*3)

Two options for the evaluation order
inc (2*3)
= inc 6 -- applying *
= 6 + 1 -- applying inc
= 7 -- applying +

inc (2*3)
= (2*3) + 1 -- applying inc
= 6 + 1 -- applying *
= 7 -- applying +

• As long as all the expression evaluations terminate, the order
we choose to do things doesn’t matter.

COMP2221—Session 8: Lazy evaluation 5

Evaluation strategies II

• We can represent a function call and its arguments in Haskell as
a graph

• Nodes in the graph are either terminal or compound. The latter
are called reducible expressions or redexes

Example

mult :: (Int, Int) -> Int
mult (x, y) = x*y

mult (1+2, 3+4)

mult

+

1 2

+

3 4

• 1, 2, 3, and 4 are terminal (not reducible) expressions
• (+) and mult are reducible expressions.

COMP2221—Session 8: Lazy evaluation 6

I I

e carp
and

D D
woman DID D

Innermost evaluation

• Evaluate “bottom up”
• First evaluate redexes that only contain terminal or irreducible
expressions, then repeat

• Need to specify evaluation order at leaves. Typically: “left to
right”

Example

mult

+

1 2

+

3 4

mult

3 +

3 4

mult

3 7

*

3 7

21

COMP2221—Session 8: Lazy evaluation 7

Outermost evaluation

• Evaluate “top down”
• First evaluate redexes that are outermost, then repeat
• Again, need an evaluation order for children, typically choose
“left to right”.

Example

mult

+

1 2

+

3 4

*

+

1 2

+

3 4

*

3 +

3 4

*

3 7

21

COMP2221—Session 8: Lazy evaluation 8

Termination

• For finite expressions, both innermost and outermost evaluation
terminate.

• Not so for infinite expressions

Example
inf :: Integer
inf = 1 + inf
fst :: (a, b) -> a
fst (x, _) = x
Prelude> fst (0, inf)

• Innermost evaluation will fail to terminate here, whereas
outermost evaluation produces a result.

COMP2221—Session 8: Lazy evaluation 9

fst O if
I o

O if

Termination II

Innermost evaluation: never terminates
inf :: Integer
inf = 1 + inf
fst :: (a, b) -> a
fst (x, _) = x
Prelude> fst (0, inf)
Prelude> fst (0, 1 + inf) -- applying inf
Prelude> fst (0, 1 + 1 + inf) -- applying inf
...

Outermost evaluation: terminates in one step
inf :: Integer
inf = 1 + inf
fst :: (a, b) -> a
fst (x, _) = x
Prelude> fst (0, inf)
0 -- applying fst

COMP2221—Session 8: Lazy evaluation 10

Call by name or value?

Call by value
• Also called eager evaluation
• Innermost evaluation
• Arguments to functions are
always fully evaluated before
the function is applied

• Each argument is evaluated
exactly once

• Evaluation strategy for most
imperative languages

Call by name
• Also called lazy evaluation
• Outermost evaluation
• Functions are applied before
their arguments are
evaluated

• Each argument may be
evaluated more than once

• Evaluation strategy in Haskell
(and others)

COMP2221—Session 8: Lazy evaluation 11

Avoiding inefficiences: sharing

• Straightforward implementation of call-by-name can lead to
inefficiency in the number of times an argument is evaluated

Example
square :: Int -> Int
square n = n * n
Prelude> square (1+2)
== (1 + 2) * (1 + 2) -- applying square
== 3 * (1 + 2) -- applying +
== 3 * 3 -- applying +
== 9

• To avoid this, Haskell implements sharing of arguments.
• We can think of this as rewriting the evaluation tree into a graph.

COMP2221—Session 8: Lazy evaluation 12

winged
this is

expensive
let x 11 2 in smg

Avoiding inefficiences: sharing

Without sharing

s

+

1 2

*

+

1 2

+

1 2

With sharing

s

+

1 2

*

+

1 2

COMP2221—Session 8: Lazy evaluation 12

Building block summary

• Prerequisites: none
• Content

• Saw some examples of lazily-evaluated (and infinite) expressions in
Haskell

• Introduced different evaluation strategies for expression graphs:
innermost and outermost

• Defined “call-by-name” and “call-by-value” models of evaluation
• Discussed termination of the evaluation of expressions
• Saw how Haskell uses “call-by-value” along with argument sharing
(treating the expression tree as a graph)

• Expected learning outcomes
• student can describe difference between call-by-name and call-by-value
evaluation schemes.

• student can explain how Haskell uses argument sharing to avoid
inefficiency when implementing call-by-value.

• Self-study
• None

COMP2221—Session 8: Lazy evaluation 13

Controlling evaluation order

When
should I stop

evaluate

How does Haskell evaluate an expression graph?

Definition (Normal form)
The expression graph contains no redexes, is finite, and is acyclic.

Data constructors are not reducible, so although they “look” like
functions, there is no reduction rule

Example
In normal form

[1, 2] == 1:2:[]

:

1 :

2 []

Not in normal form
[2 * 3, 2] == (2 * 3):2:[]

:

*

2 3

:

2 []

COMP2221—Session 8: Lazy evaluation 14

with
y
with

t Melito t

T
t t t tterminals
to minds

y

2 1 J

Not a
normal

form
cycle

How does Haskell evaluate an expression graph? II

Definition (Weak head normal form (WHNF))
The expression graph is in normal form, or the topmost node in a
the expression graph is a constructor.

This allows for cycles.

Example
ones = 1 : ones

:

1

[2 * 3, 2] == (2 * 3):2:[]

:

*

2 3

:

2 []

COMP2221—Session 8: Lazy evaluation 15

Just
2 4

is in
WHNF

but not
normal farm

Evaluation rule

• Apply reduction rules (functions) outermost first
• Evaluate children “left to right”
• Stop when the expression graph is in WHNF
• Function definitions introduce new reduction rules

Example
('H' == 'i') && ('a' == 'm')

&&

==

’H’ ’ i ’

==

’a’ ’m’

&&

F ==

’a’ ’m’

F

Right hand (second) argument is never evaluated. In this way, we
get “short circuit” evaluation for free for all functions.

COMP2221—Session 8: Lazy evaluation 16

Lazy evaluation in strict languages

• All (probably!) languages have one place where they do
something akin to lazy evaluation

Boolean expressions
#include <stdlib.h>
int blowup(int arg)
{

abort();
}
int main(int argc, char **argv)
{

return (argc < 10) || blowup();
}

• Boolean expressions do short circuit evaluation
• Avoids evaluating unnecessary expressions
• But not possible when assigning to variables.

COMP2221—Session 8: Lazy evaluation 17

Lazy evaluation in strict languages II

• Python generators are lazily evaluated

Infinite generator of integers
import itertools
def integers():

i = 0
while True:

yield i # yield control to caller
i = i+1

for p in itertools.takewhile(lambda x: x < 5, integers()):
print(p)

0
1
2
3
4

• Somewhat painful to work with when combining them

COMP2221—Session 8: Lazy evaluation 18

Strict functions

Definition (Strict function)
A function which requires its arguments to be evaluated before
being applied.

Even when using outermost evaluation.

• Some functions in Haskell are strict (normally when working
with numeric types)

Example
+

mult

1 2

+

3 4

+

*

1 2

+

3 4

+

2 +

3 4

+

2 7

9

COMP2221—Session 8: Lazy evaluation 19

Strict functions: saving space

• Haskell uses lazy evaluation by default
• It also provides a mechanism for strict function application,
using the operator ($!)

($!) :: (a -> b) -> a -> b
f $! x -- evaluate x then apply f

• When using ($!), the evaluation of the argument is forced until
it is in weak head normal form.

Example
square $! (1 + 2)
== square $! 3 -- applying +
== square 3 -- applying $!
== 3 * 3 -- applying square
== 9 -- applying *

• This allows us to write functions that evaluate as if we had
call-by-value semantics, rather than the default call-by-name

COMP2221—Session 8: Lazy evaluation 20

f x
apply f the Y

Pihap
about here

next the

Strict functions: saving space II

• Lazy evaluation can require a large amount of space to generate
the expression graph

sumwith :: Int -> [Int] -> Int
sumwith v [] = v
sumwith v (x:xs) = sumwith (v+x) xs
Prelude> sumwith 0 [1, 2, 3]
== sumwith (0+1) [2, 3]
== sumwith ((0+1)+2) [3]
== sumwith (((0+1)+2)+3) []
== (((0+1)+2)+3)
== ((1+2)+3)
== (3+3)
== 6

• This formulation generates an expression graph of size O(n) in
the length of the input list

• In contrast, strict evaluation always evaluates the summation
immediately, using constant space.

COMP2221—Session 8: Lazy evaluation 21

big expression

Saving space III

• This kind of strict evaluation can be useful
• sumwith is “just” a tail recursive left fold

sumwith = foldl (+) 0

• For a strict version, which will use less space, we can use foldl'
import Data.Foldable
sumwith' = foldl' (+) 0

• This can have reasonable time saving for large expressions

Example
Prelude> foldl (+) 0 [1..10^7]
2 secs
Prelude> foldl' (+) 0 [1..10^7]
0.25 secs

• Aside: it is probably a historical accident that foldl is not strict
(see http://www.well-typed.com/blog/90/)

COMP2221—Session 8: Lazy evaluation 22

http://www.well-typed.com/blog/90/

Building block summary

• Prerequisites: none

• Content

• Introduced the evaluation rules for Haskell expressions
• Defined terms normal form and weak head normal form
• Saw some examples of “lazy” evaluation in strict languages
• Saw how to define strict functions in Haskell using ($!)
• Saw an example where strict evaluation can improve runtime (but note
this is not a silver bullet)

• Expected learning outcomes

• student can explain Haskell’s evaluation rules for expressions
• student can provide an example of “lazy evaluation” in strict languages
• student can write strict functions in Haskell

• Self-study

• None

COMP2221—Session 8: Lazy evaluation 23

