

Session 7: Maps, folds, and type classes (again)

COMP2221: Functional programming

Lawrence Mitchell*

* lawrence.mitchell@durham.ac.uk

COMP2221—Session 7: Maps, folds, and type classes (again) 1

- Gave an example of "hidden" complexity in list reversal
- …and one approach to addressing it
- Provided advice on how to approach writing recursive functions "step by step"

[Maps and folds](#page-2-0)

Higher order functions

- We've seen many functions that are naturally recursive
- We'll now look at *higher order functions* in the standard library that capture many of these patterns

Defnition (Higher order function)

A function that does at least one of

- take one or more functions as arguments
- returns a function as its result

Higher order functions

- We've seen many functions that are naturally recursive
- We'll now look at *higher order functions* in the standard library that capture many of these patterns

Defnition (Higher order function) A function that does at least one of

- take one or more functions as arguments
- returns a function as its result
- Due to currying, every function of more than one argument is higher-order in Haskell add :: Num a => a -> a -> a This is already σ

```
add x \, y = x + y
```

```
Prelude> :type add 1
Num a \Rightarrow a \rightarrow a
```

$$
\begin{array}{ccc}\n\bullet & & & \text{MyV} \\
\text{add 1} & & & \text{Awch} \\
\text{a -- A function!} & & & \text{Awch} \\
\end{array}
$$

a hygher

- *Common programming idioms* can be written as functions in the language
- *Domain specifc languages* can be defned with appropriate collections of higher order functions
- We can use the *algebraic properties* of higher order functions to reason about programs \Rightarrow provably correct *program transformations*
- \Rightarrow useful for domain specific *compilers* and automated program generation

\n
$$
\begin{array}{r}\n \text{map } f \quad [\dots] \\
 \text{map } f \quad [\dots] \\
 \text{and} \\
 \text{
$$

- Many *linear recursive* functions on lists can be written using higher order library functions
- map: apply a function to a list map :: $(a \rightarrow b) \rightarrow [a] \rightarrow [b]$ map $[] = []$ map f $xs = [f \times | \times < - \times s]$
- filter: remove entries from a list

```
filter :: (a \rightarrow Bool) \rightarrow [a] \rightarrow [a]filter [ ] = [ ]filter p xs = [x | x \leftarrow xs, p x]
```
- any, all, concatMap, takeWhile, dropWhile, ….
- For more, see [http://hackage.haskell.org/package/base-4.12.](http://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html#g:13) [0.0/docs/Prelude.html#g:13](http://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html#g:13)

Function composition

- Often tedious to write brackets and explicit variable names
- Can use *function composition* to simplify this

```
(f \circ q)(x) = f(q(x))
```
• Haskell uses the (.) operator

```
(.) :: (b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)f . g = \{x \rightarrow f (g x)-- example
odd a = not (even a)
odd = not . even -- No need for the a variable
```
- Useful for writing composition of functions to be passed to other higher order functions. poitfree.io
- Removes need to write λ -expressions
- Called "pointfree" style.

COMP2221—Session 7: Maps, folds, and type classes (again) 6

Folds

- *folds* process a data structure in some order and build a return value
- Haskell provides a number of these in the standard prelude, with more available in the **Data.List** module

Folds

- *folds* process a data structure in some order and build a return value
- Haskell provides a number of these in the standard prelude, with more available in the Data. List module

How to think about this

- foldr and foldl are recursive
- Often easier to think of them *non-recursively*

foldr

Replace \cdot) by the given function, and \cdot by given value.

take 10 (foldr (:)[] [....)

 f_{λ} ke 10 $(1 : 2 : 3 : ... -)$

```
sum [1, 2, 3]
= foldr (+) 0 [1, 2, 3]= foldr (+) 0 (1:(2:(3:[1]))= 1 + (2 + (3 + 0))= 6
```
foldl

Same idea, but associating to the left

```
sum [1, 2, 3]
         = foldl (+) 0 [1, 2, 3]= fold1 (+) 0 (1:(2:(3:[1])))<br>= (((1 + 2) + 3) + ()<br>= 6<br>COMP2221-Session 7: Maps, folds, and type classes (again)<br>8
         = foldl (+) ( (1:(2:(3:[]))))= (((1 + 2) + 3) + \#)
         = 6
                                  \Omega
```
Why would I use them?

- Capture many linear recursive patterns in a clean way
- Can have efficient library implementation \Rightarrow can apply program optimisations
- Actually apply to all **Foldable** types, not just lists
- \cdot e.g. foldr's type is actually foldr :: Foldable $t \Rightarrow (a \rightarrow b \rightarrow b) \Rightarrow b \rightarrow t$ a $\rightarrow b$
- So we can write code for lists and (say) trees identically

Folds are general

- Many library functions on lists are written *using folds* product = foldr $(*)$ 1 sum = foldr $(+)$ θ maximum = foldr1 max \sim map needs at least me why
- Practical sheet 4 asks you to defne some others

Which to choose?

foldr

- Generally $foldr$ is the right (ha!) choice
- Works even for infinite lists!
- \cdot Note foldr (:) $\lceil \cdot \rceil$ == id
- Can terminate early.

foldl

• Usually best to use *strict* version:

```
import Data.List
foldl' -- note trailing '
```
- Doesn't work on infnite lists (needs to start at the end)
- Use when you *want* to reverse the list: foldl (flip (:)) [] == reverse
- Can't terminate early.

COMP2221—Session 7: Maps, folds, and type classes (again) 10

requois of is with-

 $xs + ys = fildr(s)ysxs$

 $flip + a b$

 $f|_{\varphi}$ $f = \log \varphi + \log x$

Building block summary

- Prerequisites: none
- Content
	- Introducted defnition of *higher order functions*
	- Saw defnition and use of a number of such functions on lists
	- Talked about *folds* and capturing a generic *pattern* of computation
	- Gave examples of why you would prefer them over explicit iteration
- Expected learning outcomes
	- student can *explain* what makes a function higher order
	- student can *write* higher order functions
	- student can *use* folds to realise linear recursive patterns
	- student can *explain* differences between foldr and foldl
- Self-study
	- None

[Higher order functions and type](#page-15-0) [classes again](#page-15-0)

- Saw example higher-order functions on lists
- Now we'll look at *even* more generic patterns
- …implement our own datatypes
- …and implement these generic patterns for our datatypes.

```
map :: (a -> b) -> [a] -> [b]filter :: (a \rightarrow Bool) \rightarrow [a] \rightarrow [a]takeWhile :: (a \rightarrow Bood) \rightarrow [a] \rightarrow [a]dropWhile :: (a \rightarrow Bood) \rightarrow [a] \rightarrow [a]concatMap :: (a -> [b]) -> [a] -> [b]
```
Separating code and data

- When designing software, a good aim is to hide the *implementation* of data structures
- In OO based languages we do this with classes and inheritence
- Or with *interfaces*, which defne a contract that a class must

```
implement
  public interface FooInterface {
    public bool isFoo();
  }
  public class MyClass implements FooInterface {
    public bool isFoo() {
      return False;
    }
  }
```
- Idea is that *calling* code doesn't know internals, and only relies on interface.
- As a result, we can change the implementation, and client code still works

Generic higher order functions

- In Haskell we can realise this idea with generic *higher order* functions, and type classes
- Last time, we saw some examples of higher order functions for lists
- For example, imagine we want to add two lists pairwise

```
-- By hand
addLists [ ] = [ ]addLists [] = []addLists (x:xs) (y:ys) = (x + y) : addLists xs ys
-- Better
addLists xs ys = map (uncurry (+)) $ zip xs ys<br>-- Best<br>addLists = zinWith (+)
-- Best
addLists = zipWith (+)
```
• If we write our own data types, are we reduced to doing everything "by hand" again?

No: use type classes

- Recall, Haskell has a concept of *type classes*
- These describe interfaces that can be used to constrain the polymorphism of functions to those types satisfying the interface

Example

- \cdot (\cdot) acts on any type, as long as that type implements the **Num** interface $(+)$:: Num a => a -> a -> a
- \cdot (<) acts on any type, as long as that type implements the **Ord** interface $(<)$:: Ord a => a -> a -> Bool
- Haskell comes with *many* such type classes encapsulating common patterns
- When we implement our own data types, we can "just" implement appropriate instances of these classes

Let's look at the types of three "maps"

Haskell is very simple. Everything is composed of Functads which are themselves a Tormund of Gurmoids, usually defined over the Devons. All you have to do is stick one Devon inside a Tormund and it vields Reverse Functads (Actually Functoids) you use to generate Unbound Gurmoids.

[https://twitter.com/niftierideology/status/](https://twitter.com/niftierideology/status/1018564372652670976) [1018564372652670976](https://twitter.com/niftierideology/status/1018564372652670976)

 \sim \sim \sim

Attaching implementations to types

```
Use an instance declaration for the type.
  data List a = Nil | Cons a (List a)
    deriving (Eq, Show)
  instance Functor List where
    fmap Nil = Nilfmap f (Cons a tail) = Cons (f a) (fmap f tail)
  data BinaryTree a = Leaf a | Node a (BinaryTree a) (BinaryTree a)
    deriving (Eq, Show)
  instance Functor BinaryTree where
    fmap f (Leaf a) = Leaf (f \ a)fmap f (Node a l r) = Node (f a) (fmap f l) (fmap f r)
```

```
list = Cons 1 (Cons 2 (Cons 4 Nil))btree = Node 1 (Leaf 2) (Leaf 4)
rtree = RNode 1 [RNode 2 [RLeaf 4]]
-- Generic add1
add1 :: (Functor c, Num a) => c a -> c a
add1 = fmap (+1)Prelude> add1 list
Cons 2 (Cons 3 (Cons 5 Nil))
```
COMP2221—Session 7: Maps, folds, and type classes (again) 19

Prelude> add1 btree

Prelude> add1 rtree

Node 2 (Leaf 3) (Leaf 5)

RNode 2 [RNode 3 [RLeaf 5]]

Are all containers Functors?

- \cdot It seems like any type that takes a parameter might be a **Functor**
- This is not necessarily the case, we require more than just type-correctness

```
-- A type describing functions from a type to itself
data Fun a = MakeFunction (a -> a)
```

```
instance Functor Fun where
  fmap f (MakeFunction g) = MakeFunction id
```
This code type-checks id :: a -> a but does not obey the *Functor laws*

- 1. $fmap$ id $c == c$ Mapping the identity function over a structure should return the structure untouched.
- 2. fmap f (fmap g c) == fmap (f ϵ g) c Mapping over a container should distribute over function composition (since the structure is unchanged, it shouldn't matter whether we do this in two passes or one).

COMP2221—Session 7: Maps, folds, and type classes (again) 20

- \cdot If I come up with a definition of f and for a type, might there have been another one?
- No! if you can confrm that the functor laws hold fmap $id == id$ fmap $(f g) = f$ map f . fmap g
- then you must have written the right thing!

Haskell can't check this for you Other more sophile tracted numerous μ

COMP2221—Session 7: Maps, folds, and type classes (again) 21

```
data List a = Nil | Cons a (List a) deriving (Eq, Show)
```

```
instance Functor List where
 fmap Nil = Nilfmap f (Cons x xs) = Cons (f x) (fmap f xs)
```
To show $fmap$ id == id, need to show fmap id (Cons x xs) == Cons x xs for any x , xs .

```
-- Induction hypothesis
fmap id xs = xs-- Base case
-- apply definition
fmap id Nil = Nil
-- Inductive case
fmap id (Cons x xs) = Cons (id x) (fmap id xs)= Cons x (fmap id xs)
== Cons x xs -- Done!
```
Exercise: do the same for the second law.

- \cdot A data type implementing **Functor** allows us to take a container of a's and turn it into a container of b's given a function f :: $a \rightarrow b$
- Foldable provides a further interface: if I can *combine* an a and a b to produce a new b, then, given a start value and a container
of as I can turn it into a b
ass Foldable f where of as I can turn it into a b

```
class Foldable f where
  -- minimal definition requires this
  Foldr :: (a -> b -> b) -> b -> f a -> b<br>[ength :: Follable f \Rightarrow f a -> lat.
```
Interfaces hide implementation details

- Haskell has *many* type classes in the standard library:
	- Num: numeric types
	- Eq: equality types
	- Ord: orderable types
	- Functor: mappable types
	- Foldable: foldable types
- If you implement a new data type, it is worthwhile thinking if it satisfes any of these interfaces

Rationale

• …

- "abstract" interfaces hide implementation details, and permit *generic* code
- This is generally good practice when writing software
- (I think) the Haskell approach is quite elegant.

Building block summary

- Prerequisites: none
- Content
	- Motivated writing higher order functions for custom data types
	- Recapitulated, and showed more examples, of type classes
	- Saw how implementing type class instances for our data types can make code agnostic to the data structure implementation
	- \cdot Saw Functor and Foldable type classes, and how they can be used to make new data types behave like builtin ones
- Expected learning outcomes
	- student can *implement* type class instances for new data types
	- student can *describe* some advantages of this approach
- Self-study
	- (Very optional) Chapters 12 & 14 of Hutton's *Programming in Haskell* are an excellent introduction to more of Haskell's "key" type classes