
Session 7: Maps, folds, and type classes (again)
COMP2221: Functional programming

Lawrence Mitchell*

*lawrence.mitchell@durham.ac.uk

COMP2221—Session 7: Maps, folds, and type classes (again) 1

 



Recap

• Gave an example of “hidden” complexity in list reversal
• …and one approach to addressing it
• Provided advice on how to approach writing recursive functions
“step by step”

COMP2221—Session 7: Maps, folds, and type classes (again) 2



Maps and folds



Higher order functions

• We’ve seen many functions that are naturally recursive
• We’ll now look at higher order functions in the standard library
that capture many of these patterns

Definition (Higher order function)
A function that does at least one of

• take one or more functions as arguments
• returns a function as its result

• Due to currying, every function of more than one argument is
higher-order in Haskell

add :: Num a => a -> a -> a
add x y = x + y

Prelude> :type add 1
Num a => a -> a -- A function!

COMP2221—Session 7: Maps, folds, and type classes (again) 3



Higher order functions

• We’ve seen many functions that are naturally recursive
• We’ll now look at higher order functions in the standard library
that capture many of these patterns

Definition (Higher order function)
A function that does at least one of

• take one or more functions as arguments
• returns a function as its result

• Due to currying, every function of more than one argument is
higher-order in Haskell

add :: Num a => a -> a -> a
add x y = x + y

Prelude> :type add 1
Num a => a -> a -- A function!

COMP2221—Session 7: Maps, folds, and type classes (again) 3

This isalready
a higher

order

fu cti



Why are they useful?

• Common programming idioms can be written as functions in
the language

• Domain specific languages can be defined with appropriate
collections of higher order functions

• We can use the algebraic properties of higher order functions to
reason about programs) provably correct program
transformations

) useful for domain specific compilers and automated program
generation

COMP2221—Session 7: Maps, folds, and type classes (again) 4



Xs

map f I
don't care what order it happens i

Could split as into halves

and then m

map f x

map f y
Tt

This idea lives behind

Hadoop style mapreduce frameworks



Higher order functions on lists

• Many linear recursive functions on lists can be written using
higher order library functions

• map: apply a function to a list
map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f xs = [f x | x <- xs]

• filter: remove entries from a list
filter :: (a -> Bool) -> [a] -> [a]
filter _ [] = []
filter p xs = [x | x <- xs, p x]

• any, all, concatMap, takeWhile, dropWhile, ….
• For more, see http://hackage.haskell.org/package/base-4.12.
0.0/docs/Prelude.html#g:13

COMP2221—Session 7: Maps, folds, and type classes (again) 5

http://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html#g:13
http://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html#g:13


Function composition

• Often tedious to write brackets and explicit variable names
• Can use function composition to simplify this

(f � g)(x) = f (g(x))

• Haskell uses the (.) operator
(.) :: (b -> c) -> (a -> b) -> (a -> c)
f . g = \x -> f (g x)
-- example
odd a = not (even a)
odd = not . even -- No need for the a variable

• Useful for writing composition of functions to be passed to
other higher order functions.

• Removes need to write �-expressions
• Called “pointfree” style.

COMP2221—Session 7: Maps, folds, and type classes (again) 6

poitfree.io



Folds

• folds process a data structure in some order and build a return
value

• Haskell provides a number of these in the standard prelude,
with more available in the Data.List module

foldr: right associative fold
Processes list from the front
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = x `f` (foldr f z xs)

COMP2221—Session 7: Maps, folds, and type classes (again) 7

linear recuse
carbing with

night
associative

f
fun
tools

reduce



Folds

• folds process a data structure in some order and build a return
value

• Haskell provides a number of these in the standard prelude,
with more available in the Data.List module

foldl: left associative fold
Processes list from the back (implicitly in reverse)
foldl :: (b -> a -> b) -> b -> [a] -> b
foldl f z [] = z
foldl f z (x:xs) = foldl f (z `f` x) xs

COMP2221—Session 7: Maps, folds, and type classes (again) 7

left
associative

t



How to think about this

• foldr and foldl are recursive
• Often easier to think of them non-recursively

foldr
Replace (:) by the given function, and [] by given value.
sum [1, 2, 3]
= foldr (+) 0 [1, 2, 3]
= foldr (+) 0 (1:(2:(3:[])))
= 1 + (2 + (3 + 0))
= 6

foldl
Same idea, but associating to the left
sum [1, 2, 3]
= foldl (+) 0 [1, 2, 3]
= foldl (+) 0 (1:(2:(3:[])))
= (((1 + 2) + 3) + 1)
= 6

COMP2221—Session 7: Maps, folds, and type classes (again) 8



Why would I use them?

• Capture many linear recursive patterns in a clean way
• Can have efficient library implementation) can apply program
optimisations

• Actually apply to all Foldable types, not just lists
• e.g. foldr’s type is actually

foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b

• So we can write code for lists and (say) trees identically

Folds are general
• Many library functions on lists are written using folds

product = foldr (*) 1
sum = foldr (+) 0
maximum = foldr1 max

• Practical sheet 4 asks you to define some others

COMP2221—Session 7: Maps, folds, and type classes (again) 9

a map
needs at least onewhy



Which to choose?

foldr
• Generally foldr is the right (ha!) choice
• Works even for infinite lists!

• Note foldr (:) [] == id
• Can terminate early.

foldl
• Usually best to use strict version:

import Data.List
foldl' -- note trailing '

• Doesn’t work on infinite lists (needs to start at the end)

• Use when you want to reverse the list: foldl (flip (:)) [] == reverse
• Can’t terminate early.

COMP2221—Session 7: Maps, folds, and type classes (again) 10



Building block summary

• Prerequisites: none

• Content

• Introducted definition of higher order functions
• Saw definition and use of a number of such functions on lists
• Talked about folds and capturing a generic pattern of computation
• Gave examples of why you would prefer them over explicit iteration

• Expected learning outcomes

• student can explain what makes a function higher order
• student can write higher order functions
• student can use folds to realise linear recursive patterns
• student can explain differences between foldr and foldl

• Self-study

• None

COMP2221—Session 7: Maps, folds, and type classes (again) 11



Higher order functions and type
classes again



• Saw example higher-order functions on lists
• Now we’ll look at even more generic patterns
• …implement our own datatypes
• …and implement these generic patterns for our datatypes.
map :: (a -> b) -> [a] -> [b]
filter :: (a -> Bool) -> [a] -> [a]
takeWhile :: (a -> Bool) -> [a] -> [a]
dropWhile :: (a -> Bool) -> [a] -> [a]
concatMap :: (a -> [b]) -> [a] -> [b]

COMP2221—Session 7: Maps, folds, and type classes (again) 12



Separating code and data

• When designing software, a good aim is to hide the
implementation of data structures

• In OO based languages we do this with classes and inheritence
• Or with interfaces, which define a contract that a class must
implement

public interface FooInterface {
public bool isFoo();

}

public class MyClass implements FooInterface {
public bool isFoo() {

return False;
}

}

• Idea is that calling code doesn’t know internals, and only relies
on interface.

• As a result, we can change the implementation, and client code
still works

COMP2221—Session 7: Maps, folds, and type classes (again) 13



Generic higher order functions

• In Haskell we can realise this idea with generic higher order
functions, and type classes

• Last time, we saw some examples of higher order functions for
lists

• For example, imagine we want to add two lists pairwise
-- By hand
addLists _ [] = []
addLists [] _ = []
addLists (x:xs) (y:ys) = (x + y) : addLists xs ys
-- Better
addLists xs ys = map (uncurry (+)) $ zip xs ys
-- Best
addLists = zipWith (+)

• If we write our own data types, are we reduced to doing
everything “by hand” again?

COMP2221—Session 7: Maps, folds, and type classes (again) 14



No: use type classes

• Recall, Haskell has a concept of type classes
• These describe interfaces that can be used to constrain the
polymorphism of functions to those types satisfying the
interface

Example
• (+) acts on any type, as long as that type implements the Num interface

(+) :: Num a => a -> a -> a

• (<) acts on any type, as long as that type implements the Ord interface
(<) :: Ord a => a -> a -> Bool

• Haskell comes with many such type classes encapsulating
common patterns

• When we implement our own data types, we can “just”
implement appropriate instances of these classes

COMP2221—Session 7: Maps, folds, and type classes (again) 15



Let’s look at the types of three “maps”

data [] a = [] | a:[a]
map :: (a -> b) -> [a] -> [b]

data BinaryTree a = Leaf a | Node a (BinaryTree a) (BinaryTree a)
bmap :: (a -> b) -> BinaryTree a -> BinaryTree b

data RoseTree a = Leaf a | Node a [RoseTree a]
rmap :: (a -> b) -> RoseTree a -> RoseTree b

Only difference is the type name of the container. This suggests that
we should make a “Container” type class to capture this pattern.

Haskell calls this type class Functor
class Functor c where

fmap :: (a -> b) -> c a -> c b

If a type implements the Functor interface, it is defines structure that
we can transform the elements of in a systematic way.

COMP2221—Session 7: Maps, folds, and type classes (again) 16



https://twitter.com/niftierideology/status/
1018564372652670976

COMP2221—Session 7: Maps, folds, and type classes (again) 17

https://twitter.com/niftierideology/status/1018564372652670976
https://twitter.com/niftierideology/status/1018564372652670976


Attaching implementations to types

Use an instance declaration for the type.
data List a = Nil | Cons a (List a)

deriving (Eq, Show)

instance Functor List where
fmap _ Nil = Nil
fmap f (Cons a tail) = Cons (f a) (fmap f tail)

data BinaryTree a = Leaf a | Node a (BinaryTree a) (BinaryTree a)
deriving (Eq, Show)

instance Functor BinaryTree where
fmap f (Leaf a) = Leaf (f a)
fmap f (Node a l r) = Node (f a) (fmap f l) (fmap f r)

COMP2221—Session 7: Maps, folds, and type classes (again) 18



Generic code

list = Cons 1 (Cons 2 (Cons 4 Nil))
btree = Node 1 (Leaf 2) (Leaf 4)
rtree = RNode 1 [RNode 2 [RLeaf 4]]

-- Generic add1
add1 :: (Functor c, Num a) => c a -> c a
add1 = fmap (+1)

Prelude> add1 list
Cons 2 (Cons 3 (Cons 5 Nil))
Prelude> add1 btree
Node 2 (Leaf 3) (Leaf 5)
Prelude> add1 rtree
RNode 2 [RNode 3 [RLeaf 5]]

COMP2221—Session 7: Maps, folds, and type classes (again) 19



Are all containers Functors?

• It seems like any type that takes a parameter might be a Functor
• This is not necessarily the case, we require more than just
type-correctness

-- A type describing functions from a type to itself
data Fun a = MakeFunction (a -> a)

instance Functor Fun where
fmap f (MakeFunction g) = MakeFunction id

This code type-checks id :: a -> a but does not obey the Functor
laws

1. fmap id c == c Mapping the identity function over a structure
should return the structure untouched.

2. fmap f (fmap g c) == fmap (f . g) c Mapping over a container
should distribute over function composition (since the structure
is unchanged, it shouldn’t matter whether we do this in two
passes or one).

COMP2221—Session 7: Maps, folds, and type classes (again) 20



How many definitions?

• If I come up with a definition of fmap for a type, might there have
been another one?

• No! if you can confirm that the functor laws hold
fmap id == id
fmap (f . g) == fmap f . fmap g

• then you must have written the right thing!

COMP2221—Session 7: Maps, folds, and type classes (again) 21

Haskell can't
check this for you

other more sophisticated
languages

car



Correctness of listMap

data List a = Nil | Cons a (List a) deriving (Eq, Show)

instance Functor List where
fmap _ Nil = Nil
fmap f (Cons x xs) = Cons (f x) (fmap f xs)

To show fmap id == id, need to show
fmap id (Cons x xs) == Cons x xs for any x, xs.

-- Induction hypothesis
fmap id xs = xs
-- Base case
-- apply definition
fmap id Nil = Nil
-- Inductive case
fmap id (Cons x xs) = Cons (id x) (fmap id xs)
== Cons x (fmap id xs)
== Cons x xs -- Done!

Exercise: do the same for the second law.

COMP2221—Session 7: Maps, folds, and type classes (again) 22



Foldable data structures

• A data type implementing Functor allows us to take a container
of a’s and turn it into a container of b’s given a function
f :: a -> b

• Foldable provides a further interface: if I can combine an a and
a b to produce a new b, then, given a start value and a container
of as I can turn it into a b

class Foldable f where
-- minimal definition requires this
foldr :: (a -> b -> b) -> b -> f a -> b

COMP2221—Session 7: Maps, folds, and type classes (again) 23



Interfaces hide implementation details

• Haskell has many type classes in the standard library:
• Num: numeric types
• Eq: equality types
• Ord: orderable types
• Functor: mappable types
• Foldable: foldable types
• …

• If you implement a new data type, it is worthwhile thinking if it
satisfies any of these interfaces

Rationale
• “abstract” interfaces hide implementation details, and permit
generic code

• This is generally good practice when writing software
• (I think) the Haskell approach is quite elegant.

COMP2221—Session 7: Maps, folds, and type classes (again) 24



Building block summary

• Prerequisites: none

• Content

• Motivated writing higher order functions for custom data types
• Recapitulated, and showed more examples, of type classes
• Saw how implementing type class instances for our data types can make
code agnostic to the data structure implementation

• Saw Functor and Foldable type classes, and how they can be used to
make new data types behave like builtin ones

• Expected learning outcomes

• student can implement type class instances for new data types
• student can describe some advantages of this approach

• Self-study

• (Very optional) Chapters 12 & 14 of Hutton’s Programming in Haskell are an
excellent introduction to more of Haskell’s “key” type classes

COMP2221—Session 7: Maps, folds, and type classes (again) 25


