

Session 7: Maps, folds, and type classes (again)

COMP2221: Functional programming

Lawrence Mitchell*

*lawrence.mitchell@durham.ac.uk

COMP2221—Session 7: Maps, folds, and type classes (again)

- Gave an example of "hidden" complexity in list reversal
- ...and one approach to addressing it
- Provided advice on how to approach writing recursive functions "step by step"

Maps and folds

Higher order functions

- We've seen many functions that are naturally recursive
- We'll now look at *higher order functions* in the standard library that capture many of these patterns

Definition (Higher order function)

A function that does at least one of

- take one or more functions as arguments
- returns a function as its result

Higher order functions

- We've seen many functions that are naturally recursive
- We'll now look at higher order functions in the standard library that capture many of these patterns

Definition (Higher order function)

A function that does at least one of

- take one or more functions as arguments
- returns a function as its result
- Due to currying, every function of more than one argument is higher-order in Haskell

```
Num a => a -> a -- A function!
```


- Common programming idioms can be written as functions in the language
- *Domain specific languages* can be defined with appropriate collections of higher order functions
- We can use the algebraic properties of higher order functions to reason about programs ⇒ provably correct program transformations
- ⇒ useful for domain specific compilers and automated program generation

- Many *linear recursive* functions on lists can be written using higher order library functions
- map: apply a function to a list
 map :: (a -> b) -> [a] -> [b]
 map _ [] = []
 map f xs = [f x | x <- xs]</pre>
- filter: remove entries from a list

```
filter :: (a -> Bool) -> [a] -> [a]
filter _ [] = []
filter p xs = [x | x <- xs, p x]</pre>
```

- any, all, concatMap, takeWhile, dropWhile,
- For more, see http://hackage.haskell.org/package/base-4.12.
 0.0/docs/Prelude.html#g:13

Function composition

- Often tedious to write brackets and explicit variable names
- Can use function composition to simplify this

```
(f \circ q)(x) = f(q(x))
```

• Haskell uses the (.) operator

```
(.) :: (b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)
f \cdot g = \langle x - \rangle f (g x)
-- example
odd a = not (even a)
bbo
        = not . even -- No need for the a variable
```

- Useful for writing composition of functions to be passed to other higher order functions. gontifice.io
- Removes need to write λ -expressions
- Called "pointfree" style.

Folds

- folds process a data structure in some order and build a return value
- Haskell provides a number of these in the standard prelude, with more available in the **Data.List** module

Folds

- folds process a data structure in some order and build a return value
- Haskell provides a number of these in the standard prelude, with more available in the Data.List module

How to think about this

- foldr and foldl are recursive
- Often easier to think of them *non-recursively*

foldr

Replace (:) by the given function, and [] by given value.

```
sum [1, 2, 3]
= foldr (+) 0 [1, 2, 3]
= foldr (+) 0 (1:(2:(3:[])))
= 1 + (2 + (3 + 0))
= 6
```

foldl

Same idea, but associating to the left

```
sum [1, 2, 3]
= foldl (+) 0 [1, 2, 3]
= foldl (+) 0 (1:(2:(3:[])))
= (((1 + 2) + 3) + (1))
= 6
```

(((0+1)+2)+3)take (0 (fildl (fl.p (:1) i) [1...7) COMP2221—Session 7: Maps, folds, and type classes (again)

Why would I use them?

- Capture many linear recursive patterns in a clean way
- Can have efficient library implementation \Rightarrow can apply program optimisations
- Actually apply to all Foldable types, not just lists
- e.g. foldr's type is actually
 foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b
- So we can write code for lists and (say) trees identically

Folds are general

- Many library functions on lists are written using folds
 product = foldr (*) 1
 sum = foldr (+) 0
 maximum = foldr1 max
- Practical sheet 4 asks you to define some others

Which to choose?

foldr

- Generally **foldr** is the right (ha!) choice
- Works even for infinite lists!
- Note foldr (:) [] == id
- Can terminate early.

foldl

• Usually best to use *strict* version:

```
import Data.List
foldl' -- note trailing '
```

- Doesn't work on infinite lists (needs to start at the end)
- Use when you want to reverse the list: foldl (flip (:)) [] == reverse
- Can't terminate early.

10

xs ++ ys = fildr (:) ys xs

flip f a b $flip f = \langle x, y \rightarrow f y \rangle$

Building block summary

- Prerequisites: none
- Content
 - Introducted definition of *higher order functions*
 - Saw definition and use of a number of such functions on lists
 - Talked about *folds* and capturing a generic *pattern* of computation
 - Gave examples of why you would prefer them over explicit iteration
- Expected learning outcomes
 - student can *explain* what makes a function higher order
 - student can *write* higher order functions
 - student can *use* folds to realise linear recursive patterns
 - student can explain differences between foldr and foldl
- Self-study
 - None

Higher order functions and type classes again

- Saw example higher-order functions on lists
- Now we'll look at *even* more generic patterns
- ...implement our own datatypes
- ...and implement these generic patterns for our datatypes.

```
map :: (a -> b) -> [a] -> [b]
filter :: (a -> Bool) -> [a] -> [a]
takeWhile :: (a -> Bool) -> [a] -> [a]
dropWhile :: (a -> Bool) -> [a] -> [a]
concatMap :: (a -> [b]) -> [a] -> [b]
```

Separating code and data

- When designing software, a good aim is to hide the *implementation* of data structures
- In OO based languages we do this with classes and inheritence
- Or with *interfaces*, which define a contract that a class must

```
implement
  public interface FooInterface {
    public bool isFoo();
  }
  public class MyClass implements FooInterface {
    public bool isFoo() {
      return False;
    }
  }
}
```

- Idea is that *calling* code doesn't know internals, and only relies on interface.
- As a result, we can change the implementation, and client code still works

COMP2221—Session 7: Maps, folds, and type classes (again)

Generic higher order functions

- In Haskell we can realise this idea with generic *higher order* functions, and type classes
- Last time, we saw some examples of higher order functions for lists
- For example, imagine we want to add two lists pairwise

• If we write our own data types, are we reduced to doing everything "by hand" again?

No: use type classes

- Recall, Haskell has a concept of *type classes*
- These describe interfaces that can be used to constrain the polymorphism of functions to those types satisfying the interface

Example

- (+) acts on any type, as long as that type implements the Num interface
 (+) :: Num a => a -> a -> a
- (<) acts on any type, as long as that type implements the Ord interface
 (<) :: Ord a => a -> a -> Bool
- Haskell comes with *many* such type classes encapsulating common patterns
- When we implement our own data types, we can "just" implement appropriate instances of these classes

Let's look at the types of three "maps"

Haskell is very simple. Everything is composed of Functads which are themselves a Tormund of Gurmoids, usually defined over the Devons. All you have to do is stick one Devon inside a Tormund and it yields Reverse Functads (Actually Functoids) you use to generate Unbound Gurmoids.

https://twitter.com/niftierideology/status/ 1018564372652670976

. . .

Attaching implementations to types

```
Use an instance declaration for the type.

data List a = Nil | Cons a (List a)

deriving (Eq, Show)

instance Functor List when

free
      fmap _ Nil = Nil
      fmap f (Cons a tail) = Cons (f a) (fmap f tail)
   data BinaryTree a = Leaf a | Node a (BinaryTree a) (BinaryTree a)
      deriving (Eq, Show)
   instance Functor BinaryTree where
      fmap f (Leaf a) = Leaf (f a)
      fmap f (Node a l r) = Node (f a) (fmap f l) (fmap f r)
```

```
list = Cons 1 (Cons 2 (Cons 4 Nil))
btree = Node 1 (Leaf 2) (Leaf 4)
rtree = RNode 1 [RNode 2 [RLeaf 4]]
-- Generic add1
add1 :: (Functor c, Num a) => c a -> c a
add1 = fmap (+1)
Prelude> add1 list
Cons 2 (Cons 3 (Cons 5 Nil))
Prelude> add1 btree
Node 2 (Leaf 3) (Leaf 5)
Prelude> add1 rtree
RNode 2 [RNode 3 [RLeaf 5]]
```

Are all containers Functors?

- It seems like any type that takes a parameter might be a Functor
- This is not necessarily the case, we require more than just type-correctness

```
-- A type describing functions from a type to itself data Fun a = MakeFunction (a -> a)
```

```
instance Functor Fun where
fmap f (MakeFunction g) = MakeFunction id
```

This code type-checks id :: a -> a but does not obey the *Functor laws*

- fmap id c == c Mapping the identity function over a structure should return the structure untouched.
- 2. fmap f (fmap g c) == fmap (f . g) c Mapping over a container should distribute over function composition (since the structure is unchanged, it shouldn't matter whether we do this in two passes or one).

COMP2221—Session 7: Maps, folds, and type classes (again)

- If I come up with a definition of fmap for a type, might there have been another one?
- No! if you can confirm that the functor laws hold fmap id == id fmap (f . g) == fmap f . fmap g
- then you must have written the right thing!

Hattell ca't dech this for you. 5 Our more rophile ticated humages

```
data List a = Nil | Cons a (List a) deriving (Eq, Show)
```

```
instance Functor List where
fmap _ Nil = Nil
fmap f (Cons x xs) = Cons (f x) (fmap f xs)
```

To show fmap id == id, need to show fmap id (Cons x xs) == Cons x xs for any x, xs.

```
-- Induction hypothesis
fmap id xs = xs
-- Base case
-- apply definition
fmap id Nil = Nil
-- Inductive case
fmap id (Cons x xs) = Cons (id x) (fmap id xs)
== Cons x (fmap id xs)
== Cons x xs -- Done!
```

Exercise: do the same for the second law.

COMP2221—Session 7: Maps, folds, and type classes (again)

- A data type implementing Functor allows us to take a container of a's and turn it into a container of b's given a function
 f :: a -> b
- Foldable provides a further interface: if I can combine an a and a b to produce a new b, then, given a start value and a container of as I can turn it into a b
 Class Foldable f where

Interfaces hide implementation details

- Haskell has *many* type classes in the standard library:
 - Num: numeric types
 - **Eq**: equality types
 - Ord: orderable types
 - Functor: mappable types
 - Foldable: foldable types
- If you implement a new data type, it is worthwhile thinking if it satisfies any of these interfaces

Rationale

• ...

- "abstract" interfaces hide implementation details, and permit *generic* code
- This is generally good practice when writing software
- (I think) the Haskell approach is quite elegant.

Building block summary

- Prerequisites: none
- Content
 - Motivated writing higher order functions for custom data types
 - Recapitulated, and showed more examples, of type classes
 - Saw how implementing type class instances for our data types can make code agnostic to the data structure implementation
 - Saw **Functor** and **Foldable** type classes, and how they can be used to make new data types behave like builtin ones
- Expected learning outcomes
 - student can *implement* type class instances for new data types
 - student can describe some advantages of this approach
- Self-study
 - (Very optional) Chapters 12 & 14 of Hutton's *Programming in Haskell* are an excellent introduction to more of Haskell's "key" type classes