
Session 3: Types and classes II
COMP2221: Functional programming

Lawrence Mitchell*

*lawrence.mitchell@durham.ac.uk

COMP2221—Session 3: Types and classes II 1

Recap

• Idea that variables, and functions have types
• Saw some basic Haskell types

• Bool
• Int, Integer, Float
• Char
• tuples (a, b, c) and lists [a]

• Discussed currying of functions.
-- "uncurried"
add' :: (Int, Int) -> Int
add' (x, y) = x + y

-- "curried"
add'' :: Int -> Int -> Int
add'' x y = x y

COMP2221—Session 3: Types and classes II 2

Currying conventions (reminder)

• (Almost) all functions in Haskell are written in curried form
) To avoid messy syntax, this leads to associativity rules for -> and

function application.

-> associates to the right
Int -> Int -> Int -> Int
-- Means
Int -> (Int -> (Int -> Int))

Function application associates to the left
mult x y z
-- Means
((mult x) y) z

COMP2221—Session 3: Types and classes II 3

Type inference

• Any type declaration you write will be checked by the type
inference engine. Error if incorrect

foo :: Int -> Bool
foo x = x + 3
error:

- Couldn't match expected type `Bool' with actual type `Int'
- In the expression: x + 3

In an equation for `foo': foo x = x + 3

COMP2221—Session 3: Types and classes II 4

Type inference II

Recommendation
Reasoning about types is a core part of understanding (and
writing) Haskell code.

) always decorate function definitions with their type.

Syntax conventions
• Function application is so important that it is written as quietly
as possible: with whitespace

• All functions can be called in prefix form:
“foo a b”, not “a foo b”

• …but, special syntax for binary functions.

COMP2221—Session 3: Types and classes II 5

Binary functions: infix notation

Infix notation
All binary functions (which have type a -> b -> c) can be written
as infix functions.

Symbol only names
Names consisting only of symbols (e.g. +, *)
1 + 2 -- infix notation
(+) 1 2 -- prefix notation
False && True -- infix notation
(&&) False True -- prefix notation

“Normal” names
Names with alpha-numeric characters (e.g. div, mod)
mod 3 2 -- prefix notation
3 `mod` 2 -- infix notation using backticks

COMP2221—Session 3: Types and classes II 6

Summary

• Functions defined by “equations” that match patterns:
head' [] = []
head' (x:xs) = x

“Where-ever you see head' [] replace it with []”
• No side effects) substitution is always safe/correct.
• Patterns are tried textually in order down the page.
• Guards can be used to constrain when equations can match

signum n | n > 0 = 1
| n == 0 = 0
| otherwise = -1

Guard can be any expression that evaluates to a Bool value.
Compare

s(x) =

8
>><

>>:

1 x > 0
0 x = 0
�1 otherwise

COMP2221—Session 3: Types and classes II 7

referentially
transparent

that evaluates

otherwiseTrue

Building block summary

• Prerequisites: none

• Content

• Defining functions as “equations”
• Pattern matching in equations
• Guards and conditional expressions
• Special syntax for infix notation (binary functions)

• Expected learning outcomes

• student can write functions using conditional expressions and guard
expressions

• student understands order in which patterns are tried in matching

• Self-study

• None

COMP2221—Session 3: Types and classes II 8

Polymorphism

Polymorphism

• Recall, Haskell is strictly typed.
• What does this mean for (say) length?

Different types?
length [True, False, True] -- :: [Bool] -> Int ?
length [1, 2, 3] -- :: [Int] -> Int ?

These functions must have different types, no?

Polymorphic types
Prelude> :type length
length :: [a] -> Int

“length eats a list of values of any type a and returns an Int”
a is called a type variable.
This is called parametric polymorphism.

COMP2221—Session 3: Types and classes II 9

Polymorphism

• Recall, Haskell is strictly typed.
• What does this mean for (say) length?

Different types?
length [True, False, True] -- :: [Bool] -> Int ?
length [1, 2, 3] -- :: [Int] -> Int ?

These functions must have different types, no?

Polymorphic types
Prelude> :type length
length :: [a] -> Int

“length eats a list of values of any type a and returns an Int”
a is called a type variable.
This is called parametric polymorphism.

COMP2221—Session 3: Types and classes II 9

Contrast with OO languages: defintions

Definition (Parametric polymorphism)
Write a single implementation of a function that applies generically
and identically to values of any type.

Definition (“ad-hoc” polymorphism)
Write multiple implementations of a function, one for each type
you wish to support.

Definition (Subtype polymorphism)
Relate datatypes by some “substitutability”. Write a function for a
supertype instance. Now all subtypes can use it.

“Duck typing” or “Liskov substitution principle”.

COMP2221—Session 3: Types and classes II 10

Contrast with OO languages: examples

Subtype polymorphism
class Foo(object):

def length(self, ...):
pass

class Bar(Foo):
pass

a = Foo().length()
Every Bar is-a Foo, so we can
call the length method.
b = Bar().length()

Ad-hoc polymorphism
class Foo(object):

pass
class Bar(object):

pass
def length(obj):

if isinstance(obj, Foo):
...

elif isinstance(obj, Bar):
...

length knows how to handle things
of type Foo and type Bar
a = length(Foo())
b = length(Bar())

Parametric polymorphism
-- length doesn't care what type the entries
-- in the list are
length :: [a] -> Int
length [] = 0
length (_:xs) = 1 + length xs

COMP2221—Session 3: Types and classes II 11

Contrast with OO languages

• Parametric polymorphism also called generic programming
• Introduced in ML in 1975.
• Has been adopted by a number of languages, including
traditional OO ones.

• For example, Java or C# have “generics” for this purpose
// Implementation of HashSet is generic
// Specialised on instantiation
Set<int> intset = new HashSet<int>();
Set<Object> objset = new HashSet<Object>();

• C++ templates also allow for similar style of programming

COMP2221—Session 3: Types and classes II 12

How do we

knw it is
hashable
or object

interface Nashset T implementstrashy is
hashable

clues Foo
def a hash self

pass

Constraining polymorphic functions

• Some polymorphic functions only apply to types that satisfy
certain constraints

• For example (+) works on all types a, as long as that type is a
number type.

Example

(+) :: Num a => a -> a -> a

“For any type a that is an instance of the class Num of numeric
types, (+) has type a -> a -> a”

• This constraint is called a class constraint
• An expression or type with one or more such constraints is
called overloaded.

) Num a => a -> a -> a is an overloaded type and (+) is an
overloaded function.

COMP2221—Session 3: Types and classes II 13

Type classes

1989 Wadler Brott
Making ad hoc polymorphism

less ad hoc

Haskell classes

WARNING!
The words class and instance are the same as in object-oriented
programming languages, but their meaning is very different.

Definition (Class)
A collection of types that support certain, specified, overloaded
operations called methods.

Definition (Instance)
A concrete type that belongs to a class and provides
implementations of the required methods.

COMP2221—Session 3: Types and classes II 14

r

Analogous constructs in other languages

• Compare: type “a collection of related values”
• This is not like subclassing and inheritance in Java/C++
• If you write flat interfaces with ‘abc.abstractmethod‘ in Python.
• Rust traits give you something close
• Close to a combination of Java interfaces and generics
• C++ “concepts” (in C++20) are also very similar.

COMP2221—Session 3: Types and classes II 15

ICH

ICE

Defining classes I

• Let us say we want to encapsulate some new property of types
Foo-ness

• We define the interface the type should support
class Foo a where

isfoo :: a -> Bool

• Now we say how types implement this
instance Foo Int where

isfoo _ = False

instance Foo Char where
isfoo c = c `elem` ['a'..'c']

• Can add new interfaces to old types, and new types to old
interfaces.

• Contrast Java, where if I implement a new interface it is very
difficult to make existing classes implement it.

COMP2221—Session 3: Types and classes II 16

If

Defining classes II

• Classes (interfaces) can provide default implementation.
• Example, the Eq class representing equality requires both (==)
and (/=).

• Since a == b , not (a /= b), we can provide default
implementations and only require that an instance implements
one.

class Eq a where
(==) :: a -> a -> Bool
x == y = not (x /= y)
(/=) :: a -> a -> Bool
x /= y = not (x == y)

-- instance for MyType only needs to provide one of (==) or (/=).
instance Eq MyType where

x == y = ...

COMP2221—Session 3: Types and classes II 17

detant to negate

default to negate I

Building block summary

• Prerequisites: none
• Content

• Looked at Haskell classes in the context of overloaded functions
• Looked at generic programming (polymorphism) in Haskell
• Defined overloading in terms of constrained polymorphism
• Looked at constrained polymorphism and class constraints.

• Expected learning outcomes
• student knows definition of generic programming and overloading as
applied in Haskell

• student can write simple polymorphic code in Haskell
• student understands some differences between Haskell-style overloading,
and Java-style subclassing

• Self-study
• (Optional, but interesting). Wadler & Blott, How to make ad-hoc
polymorphism less ad hoc, POPL (1989). https://people.csail.mit.
edu/dnj/teaching/6898/papers/wadler88.pdf

• (Optional, probably the first 45 minutes only?). Simon Peyton-Jones on
type classes https://www.youtube.com/watch?v=6COvD8oynmI.

COMP2221—Session 3: Types and classes II 18

to

https://people.csail.mit.edu/dnj/teaching/6898/papers/wadler88.pdf
https://people.csail.mit.edu/dnj/teaching/6898/papers/wadler88.pdf
https://www.youtube.com/watch?v=6COvD8oynmI

