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Recap

• Idea that variables, and functions have types
• Saw some basic Haskell types

• Bool
• Int, Integer, Float
• Char
• tuples (a, b, c) and lists [a]

• Discussed currying of functions.
-- "uncurried"
add' :: (Int, Int) -> Int
add' (x, y) = x + y

-- "curried"
add'' :: Int -> Int -> Int
add'' x y = x y
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Currying conventions (reminder)

• (Almost) all functions in Haskell are written in curried form
) To avoid messy syntax, this leads to associativity rules for -> and

function application.

-> associates to the right
Int -> Int -> Int -> Int
-- Means
Int -> (Int -> (Int -> Int))

Function application associates to the left
mult x y z
-- Means
((mult x) y) z

COMP2221—Session 3: Types and classes II 3



Type inference

• Any type declaration you write will be checked by the type
inference engine. Error if incorrect

foo :: Int -> Bool
foo x = x + 3
error:

- Couldn't match expected type `Bool' with actual type `Int'
- In the expression: x + 3

In an equation for `foo': foo x = x + 3
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Type inference II

Recommendation
Reasoning about types is a core part of understanding (and
writing) Haskell code.

) always decorate function definitions with their type.

Syntax conventions
• Function application is so important that it is written as quietly
as possible: with whitespace

• All functions can be called in prefix form:
“foo a b”, not “a foo b”

• …but, special syntax for binary functions.
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Binary functions: infix notation

Infix notation
All binary functions (which have type a -> b -> c) can be written
as infix functions.

Symbol only names
Names consisting only of symbols (e.g. +, *)
1 + 2 -- infix notation
(+) 1 2 -- prefix notation
False && True -- infix notation
(&&) False True -- prefix notation

“Normal” names
Names with alpha-numeric characters (e.g. div, mod)
mod 3 2 -- prefix notation
3 `mod` 2 -- infix notation using backticks
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Summary

• Functions defined by “equations” that match patterns:
head' [] = []
head' (x:xs) = x

“Where-ever you see head' [] replace it with []”
• No side effects) substitution is always safe/correct.
• Patterns are tried textually in order down the page.
• Guards can be used to constrain when equations can match

signum n | n > 0 = 1
| n == 0 = 0
| otherwise = -1

Guard can be any expression that evaluates to a Bool value.
Compare

s(x) =

8
>><

>>:

1 x > 0
0 x = 0
�1 otherwise
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Building block summary

• Prerequisites: none

• Content

• Defining functions as “equations”
• Pattern matching in equations
• Guards and conditional expressions
• Special syntax for infix notation (binary functions)

• Expected learning outcomes

• student can write functions using conditional expressions and guard
expressions

• student understands order in which patterns are tried in matching

• Self-study

• None
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Polymorphism



Polymorphism

• Recall, Haskell is strictly typed.
• What does this mean for (say) length?

Different types?
length [True, False, True] -- :: [Bool] -> Int ?
length [1, 2, 3] -- :: [Int] -> Int ?

These functions must have different types, no?

Polymorphic types
Prelude> :type length
length :: [a] -> Int

“length eats a list of values of any type a and returns an Int”
a is called a type variable.
This is called parametric polymorphism.
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Contrast with OO languages: defintions

Definition (Parametric polymorphism)
Write a single implementation of a function that applies generically
and identically to values of any type.

Definition (“ad-hoc” polymorphism)
Write multiple implementations of a function, one for each type
you wish to support.

Definition (Subtype polymorphism)
Relate datatypes by some “substitutability”. Write a function for a
supertype instance. Now all subtypes can use it.

“Duck typing” or “Liskov substitution principle”.
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Contrast with OO languages: examples

Subtype polymorphism
class Foo(object):

def length(self, ...):
pass

class Bar(Foo):
pass

a = Foo().length()
# Every Bar is-a Foo, so we can
# call the length method.
b = Bar().length()

Ad-hoc polymorphism
class Foo(object):

pass
class Bar(object):

pass
def length(obj):

if isinstance(obj, Foo):
...

elif isinstance(obj, Bar):
...

# length knows how to handle things
# of type Foo and type Bar
a = length(Foo())
b = length(Bar())

Parametric polymorphism
-- length doesn't care what type the entries
-- in the list are
length :: [a] -> Int
length [] = 0
length (_:xs) = 1 + length xs
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Contrast with OO languages

• Parametric polymorphism also called generic programming
• Introduced in ML in 1975.
• Has been adopted by a number of languages, including
traditional OO ones.

• For example, Java or C# have “generics” for this purpose
// Implementation of HashSet is generic
// Specialised on instantiation
Set<int> intset = new HashSet<int>();
Set<Object> objset = new HashSet<Object>();

• C++ templates also allow for similar style of programming
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Constraining polymorphic functions

• Some polymorphic functions only apply to types that satisfy
certain constraints

• For example (+) works on all types a, as long as that type is a
number type.

Example

(+) :: Num a => a -> a -> a

“For any type a that is an instance of the class Num of numeric
types, (+) has type a -> a -> a”

• This constraint is called a class constraint
• An expression or type with one or more such constraints is
called overloaded.

) Num a => a -> a -> a is an overloaded type and (+) is an
overloaded function.
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Haskell classes

WARNING!
The words class and instance are the same as in object-oriented
programming languages, but their meaning is very different.

Definition (Class)
A collection of types that support certain, specified, overloaded
operations called methods.

Definition (Instance)
A concrete type that belongs to a class and provides
implementations of the required methods.

COMP2221—Session 3: Types and classes II 14

r



Analogous constructs in other languages

• Compare: type “a collection of related values”
• This is not like subclassing and inheritance in Java/C++
• If you write flat interfaces with ‘abc.abstractmethod‘ in Python.
• Rust traits give you something close
• Close to a combination of Java interfaces and generics
• C++ “concepts” (in C++20) are also very similar.
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Defining classes I

• Let us say we want to encapsulate some new property of types
Foo-ness

• We define the interface the type should support
class Foo a where

isfoo :: a -> Bool

• Now we say how types implement this
instance Foo Int where

isfoo _ = False

instance Foo Char where
isfoo c = c `elem` ['a'..'c']

• Can add new interfaces to old types, and new types to old
interfaces.

• Contrast Java, where if I implement a new interface it is very
difficult to make existing classes implement it.
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Defining classes II

• Classes (interfaces) can provide default implementation.
• Example, the Eq class representing equality requires both (==)
and (/=).

• Since a == b , not (a /= b), we can provide default
implementations and only require that an instance implements
one.

class Eq a where
(==) :: a -> a -> Bool
x == y = not (x /= y)
(/=) :: a -> a -> Bool
x /= y = not (x == y)

-- instance for MyType only needs to provide one of (==) or (/=).
instance Eq MyType where

x == y = ...
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Building block summary

• Prerequisites: none
• Content

• Looked at Haskell classes in the context of overloaded functions
• Looked at generic programming (polymorphism) in Haskell
• Defined overloading in terms of constrained polymorphism
• Looked at constrained polymorphism and class constraints.

• Expected learning outcomes
• student knows definition of generic programming and overloading as
applied in Haskell

• student can write simple polymorphic code in Haskell
• student understands some differences between Haskell-style overloading,
and Java-style subclassing

• Self-study
• (Optional, but interesting). Wadler & Blott, How to make ad-hoc
polymorphism less ad hoc, POPL (1989). https://people.csail.mit.
edu/dnj/teaching/6898/papers/wadler88.pdf

• (Optional, probably the first 45 minutes only?). Simon Peyton-Jones on
type classes https://www.youtube.com/watch?v=6COvD8oynmI.
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