A
W Durham

University

Session 2: Types and classes

COMP2221: Functional programming

Lawrence Mitchell”

“lawrence.mitchell@durham.ac.uk

COMP2221—Session 2: Types and classes

- What are some differences between functional and imperative
programming?

- Which programming model more closely mirrors the way
computers execute?

- What are interpreters and compilers? (in very broad terms)
- What are some advantages of an interpreter?
- Side effects (definition)

- Why can side effects easily introduce bugs?

COMP2221—Session 2: Types and classes 2

Dm ~ gopkor: OOREL & b %Q&&

- Mathematics and programming rely on the notion of types

- Tell us how to interpret a variable

- Provide restrictions on valid operations

Example: Java/C

int a = 4; double a = 4;
int b = 3; double b = 3;
double ¢ = a/b; double ¢ = a/b;

{v{mg,a/ Ve pad M f”‘} dav -
W fdtorih Slweeha . —> Jyu 228

COMP2221—Session 2: Types and classes

ug oo

e bk

- Mathematics and programming rely on the notion of types
- Tell us how to interpret a variable

- Provide restrictions on valid operations

Example: Java/C

int a = 4; double a = 4;
int b = 3; double b = 3;
double ¢ = a/b; double ¢ = a/b;

Result depends on input types.

Since computers represent everything as sequences of bits, types
are also required to define what these bit streams mean.

COMP2221—Session 2: Types and classes 3

..required to know what a bit sequence means.
Implementation

Find the correct implementation of, for example, '+’

Correctness

check whether an operation on some data is valid and/or
well-defined.

check whether a code fragment is correct (type safety)

Documentation
document the code’s semantics (for the reader)

COMP2221—Session 2: Types and classes 4

Types in Haskell

Haskell is
Strongly, statically typed.

= every well-formed expression has exactly one type, these types
are known at compile time

Definition (Type)
A type identifies a collection of values

Example

- Bool the two logical values True and False.

- Bool -> Bool the set of all functions that take a Bool as
input and produce a Boo'l as output.

- We will see more standard types soon

COMP2221—Session 2: Types and classes 5

Notation and inspection

Attaching types

Haskell's notation for “e is of type T" Is spelt
e :: T
-- False 1s of type Bool
False :: Bool

-- not 1s of type Bool -> Bool
not :: Bool -> Bool

What type does X have?

Every valid expression in Haskell must have a valid type.

You can ask GHCI what the type of an expression is with the
command :type expr

Prelude> :type sum
sum :: Num a => [a] -> a

COMP2221—Session 2: Types and classes

Type checking |

- Translators must check for type correctness

Definition (Statically typed language)
We check correctness at translation time. (C/Java/Haskell/...)

= invalid types mean “translation error”

—S ot
-- Invalid [M/Wc% m_(mv\b
foo :: a -> Int d"fﬁ{"bi ch(ﬂ

foo f =1 + f

Definition (Dynamically typed language)
We check correctness at run time. (Python “duck typing”)

= invalid types only detected if we “use them”

Fine as long as f supports addition with a number
def foo(f): Mol WON —gonep o
return 1 + f rf/{'\)’\/\ S,

COMP2221—Session 2: Types and classes 7

Type checking Il

- How does the translator determine the type of an expression?

Explicit annotation

Programmer annotates all variables with type information

(e.g. C/Java) R SOl =W
Bt a.,(,_—BCd?,.A,-—i “

Type inference /H(K‘a([(j ~MA nes™ fﬂz{l,a, «Lb?@ “furz— e
Translator infers the types of variables based on the operations
used (e.g. Haskell/ML)

Duck typing

Translator/runtime just tries the operation, if it succeeds, that was
a valid type! (Python)

(1%
COMP2221—Session 2: Types and classes 8

Demo time

Let’s look at some types

COMP2221—Session 2: Types and classes

Building block summary

- Prerequisites: none

- Content

- Different concepts of typing (dynamic/static)
- Looked at some builtin Haskell types
- Looked at list and tuple types

- Expected learning outcomes
- student knows names of basic Haskell types compiling a
programming language
- student can explain difference between lists and tuples in Haskell.
- student can use the Haskell interpreter to determine the type of
an expression.
- Self-study

- None

COMP2221—Session 2: Types and classes 10

Functions have types

Programming with functions

- Functions have types in all programming languages, Haskell
makes this particularly explicit

Functions of one argument “unary”
Map from one type to another

not :: Bool -> Bool
and :: [Bool] -> Bool

?

Functions of two arguments “binary’
Map from two types to another

add :: (Int, Int) -> Int

“add eats two Ints and returns an Int”

COMP2221—Session 2: Types and classes 1

An alternative view

- Since functions are first class objects, functions of more than
one argument are typically written in Haskell as functionals

- Naturally extends from binary to n-ary functions

“Curried” view of binary functions

add :: Int -> (Int -> Int)

“add eats an Int and returns a function which eats an Int and
returns an Int”

- This idea comes from the formalism of Lambda calculus

COMP2221—Session 2: Types and classes 12

Definition (Currying (informal))
Turn a function of n arguments into a function of n — 1 arguments.

History Why currying?

- Idea first introduced by - easier to reason about and
Gottlob Frege prove things with functions of

- Developed by Moses only 1 variable!
Schonfinkel in the context of . Flexibility in programming:
combinatory logic makes composing functions

- Further extended by Haskell simpler
Brooks Curry working in logic . Related to partial evaluation
and category theory where we bind some

- Name “currying” coined by variables in an n-ary function
Christopher Strachey (1967) to a value

COMP2221—Session 2: Types and classes 13

Demo time

Let’s look at some functions

COMP2221—Session 2: Types and classes

14

Building block summary

- Prerequisites: none
- Content

- Specifying input and output types of functions

- Functions have types, and so returning functions is natural

- Functions of multiple variables can be defined using tuples, or else
returning functions on a reduced parameter list

- Introduction to currying

- Expected learning outcomes

- student knows how to specify the type of a function

- student knows two ways of writing functions of multiple arguments.

- student can explain the difference between these paradigms (currying)

- student can illustrate where currying or not makes a difference in
semantics of function application

- Self-study

- Lecture code.

COMP2221—Session 2: Types and classes 15

