
Session 2: Types and classes
COMP2221: Functional programming

Lawrence Mitchell*

*lawrence.mitchell@durham.ac.uk

COMP2221—Session 2: Types and classes 1

Recap

• What are some differences between functional and imperative
programming?

• Which programming model more closely mirrors the way
computers execute?

• What are interpreters and compilers? (in very broad terms)
• What are some advantages of an interpreter?
• Side effects (definition)
• Why can side effects easily introduce bugs?

COMP2221—Session 2: Types and classes 2

Types

• Mathematics and programming rely on the notion of types
• Tell us how to interpret a variable
• Provide restrictions on valid operations

Example: Java/C
int a = 4; double a = 4;
int b = 3; double b = 3;

double c = a/b; double c = a/b;

Result depends on input types.

Since computers represent everything as sequences of bits, types
are also required to define what these bit streams mean.

COMP2221—Session 2: Types and classes 3

On a copter everything is bits types tell us how
to interpret the bits

Weger divisie and floating port divisi
use different chucks types tell

us which which to use

Types

• Mathematics and programming rely on the notion of types
• Tell us how to interpret a variable
• Provide restrictions on valid operations

Example: Java/C
int a = 4; double a = 4;
int b = 3; double b = 3;

double c = a/b; double c = a/b;

Result depends on input types.

Since computers represent everything as sequences of bits, types
are also required to define what these bit streams mean.

COMP2221—Session 2: Types and classes 3

Types are …

…required to know what a bit sequence means.

Implementation
Find the correct implementation of, for example, ’+’

Correctness
check whether an operation on some data is valid and/or
well-defined.

check whether a code fragment is correct (type safety)

Documentation
document the code’s semantics (for the reader)

COMP2221—Session 2: Types and classes 4

Types in Haskell

Haskell is
Strongly, statically typed.

) every well-formed expression has exactly one type, these types
are known at compile time

Definition (Type)
A type identifies a collection of values

Example
• Bool the two logical values True and False.
• Bool -> Bool the set of all functions that take a Bool as
input and produce a Bool as output.

• We will see more standard types soon

COMP2221—Session 2: Types and classes 5

Notation and inspection

Attaching types
Haskell’s notation for “e is of type T” is spelt

e :: T
-- False is of type Bool
False :: Bool
-- not is of type Bool -> Bool
not :: Bool -> Bool

What type does X have?
Every valid expression in Haskell must have a valid type.

You can ask GHCi what the type of an expression is with the
command :type expr

Prelude> :type sum
sum :: Num a => [a] -> a

COMP2221—Session 2: Types and classes 6

Type checking I

• Translators must check for type correctness
Definition (Statically typed language)
We check correctness at translation time. (C/Java/Haskell/…)

) invalid types mean “translation error”

-- Invalid
foo :: a -> Int
foo f = 1 + f

Definition (Dynamically typed language)
We check correctness at run time. (Python “duck typing”)

) invalid types only detected if we “use them”

Fine as long as f supports addition with a number
def foo(f):

return 1 + f
COMP2221—Session 2: Types and classes 7

Incorrect programs are

spotted early

Have non an pie
reton types

Type checking II

• How does the translator determine the type of an expression?

Explicit annotation
Programmer annotates all variables with type information
(e.g. C/Java)

Type inference
Translator infers the types of variables based on the operations
used (e.g. Haskell/ML)

Duck typing
Translator/runtime just tries the operation, if it succeeds, that was
a valid type! (Python)

COMP2221—Session 2: Types and classes 8

Ctt you can use auto
But aly Coral
Hindley Milner style type inference

Kh to some commentary on this
on the website

Demo time
Let’s look at some types

COMP2221—Session 2: Types and classes 9

Building block summary

• Prerequisites: none
• Content

• Different concepts of typing (dynamic/static)
• Looked at some builtin Haskell types
• Looked at list and tuple types

• Expected learning outcomes
• student knows names of basic Haskell types compiling a
programming language

• student can explain difference between lists and tuples in Haskell.
• student can use the Haskell interpreter to determine the type of
an expression.

• Self-study
• None

COMP2221—Session 2: Types and classes 10

Functions have types

Programming with functions

• Functions have types in all programming languages, Haskell
makes this particularly explicit

Functions of one argument “unary”
Map from one type to another

not :: Bool -> Bool
and :: [Bool] -> Bool

Functions of two arguments “binary”
Map from two types to another

add :: (Int, Int) -> Int

“add eats two Ints and returns an Int”

COMP2221—Session 2: Types and classes 11

An alternative view

• Since functions are first class objects, functions of more than
one argument are typically written in Haskell as functionals

• Naturally extends from binary to n-ary functions

“Curried” view of binary functions
add :: Int -> (Int -> Int)

“add eats an Int and returns a function which eats an Int and
returns an Int”

• This idea comes from the formalism of Lambda calculus

COMP2221—Session 2: Types and classes 12

Currying

Definition (Currying (informal))
Turn a function of n arguments into a function of n� 1 arguments.

History
• Idea first introduced by
Gottlob Frege

• Developed by Moses
Schönfinkel in the context of
combinatory logic

• Further extended by Haskell
Brooks Curry working in logic
and category theory

• Name “currying” coined by
Christopher Strachey (1967)

Why currying?
• easier to reason about and
prove things with functions of
only 1 variable!

• Flexibility in programming:
makes composing functions
simpler

• Related to partial evaluation
where we bind some
variables in an n-ary function
to a value

COMP2221—Session 2: Types and classes 13

Demo time
Let’s look at some functions

COMP2221—Session 2: Types and classes 14

Building block summary

• Prerequisites: none

• Content

• Specifying input and output types of functions
• Functions have types, and so returning functions is natural
• Functions of multiple variables can be defined using tuples, or else
returning functions on a reduced parameter list

• Introduction to currying

• Expected learning outcomes

• student knows how to specify the type of a function
• student knows two ways of writing functions of multiple arguments.
• student can explain the difference between these paradigms (currying)
• student can illustrate where currying or not makes a difference in
semantics of function application

• Self-study

• Lecture code.

COMP2221—Session 2: Types and classes 15

