
Session 1: Introduction
COMP2221: Functional programming

Lawrence Mitchell*

*lawrence.mitchell@durham.ac.uk

COMP2221—Session 1: Introduction 1

 

Hasty



Outline

• Functional programming: what is it?
• Course philosophy & organisation
• Why do we want programming languages anyway?
• Some taster examples

First practicals start this week. Problem sheets are hosted on the
course webpage at https://teaching.wence.uk/comp2221.

COMP2221—Session 1: Introduction 2

https://teaching.wence.uk/comp2221


A simple example, computing n!

Imperative style
factorial = 1
for i in range(1, n+1):

factorial = factorial * i

Functional style

Fn =
(
1 n = 1
nFn�1 otherwise

def factorial(n):
if n == 1:

return 1
else:

return n * factorial(n-1)

Which implementation maps more naturally onto a computer?

Which implementation is more convenient for the programmer?

COMP2221—Session 1: Introduction 3

Assignment
loop
update ratibplace

n is nitrger
7 9

1
No motif.cat
A variables

i

place
Might

have
different answers



What is a functional language?

As with most things, there are multiple opinions on precise
definitions but broadly:

• A style of programming where the building block of computation
is application of functions to arguments;

) a functional language is one that supports and encourages
programming in this style.

But isn’t every programming language about functions and applying
them to arguments?

COMP2221—Session 1: Introduction 4



Side effects

Definition (Side effect)
Modify some (internal/hidden) state as well as returning a value

y1 = f(1)
y2 = f(1)

Will y1 == y2?
How could it not?

If f has some internal state that affects the answer:
state = 0
def f(n):

global state
state += 1
return n + state

print(f(1)) => "2"
print(f(1)) => "3"

COMP2221—Session 1: Introduction 5

0



Side effects

Definition (Side effect)
Modify some (internal/hidden) state as well as returning a value

y1 = f(1)
y2 = f(1)

Will y1 == y2?
How could it not?

If f has some internal state that affects the answer:
state = 0
def f(n):

global state
state += 1
return n + state

print(f(1)) => "2"
print(f(1)) => "3"

COMP2221—Session 1: Introduction 5

mortification
of

state f
generates
radar

s

f thes
apt

frm
sweden

reasoning abut
answer is nonlocal



A functional approach

• Forbid variable assignment and side effects in the language.
“Pure functional”

3 Makes reasoning about code simpler (for humans and
compilers).

7 A new programming paradigm: takes some time to get used to.

Why not C/Java/Python?
3 It is possible to write in a functional style in these languages…
7 but the language does not enforce it.
7 Moreover, the language-level support is weak
3 In contrast, Haskell is a purely functional (side effects not
allowed!), and built from scratch for functional programming

COMP2221—Session 1: Introduction 6

at

The research language for explains
lob of FP ideas



Goals of this course

• Understand Haskell and functional applications and write your
own code.

) practice via practicals
• Provide academic background: revealing underlying
programming paradigms

• Discuss pros and cons of the functional style (performance,
correctness, ease of implementation, …) in different application
scenarios.

• Talk about how functional style is useful in software engineering.
• Link into related areas such as equational reasoning, automated
proof systems, and parallel programming.

COMP2221—Session 1: Introduction 7



Building block summary

• Prerequisites: none
• Content

• Look at toy problem from both a functional and imperative point
of view

• Define some basic terms; functional style, side effects, functional
programming language

• Expected learning outcomes
• student knows the definition of functional programming and side
effects

• student can explain side effects with some examples
• student can apply definition of side effects to determine if some
code fragment is side effectful

COMP2221—Session 1: Introduction 8



Underlying book

• Course follows (first half of) Graham Hutton’s Haskell book,
Programming in Haskell (2016)

• Slides for the first 10 chapters are available at
http://www.cs.nott.ac.uk/~pszgmh/pih.html

• Course will make links with other material/programming
languages (C#/C/Python)) seen in other submodules

COMP2221—Session 1: Introduction 9

http://www.cs.nott.ac.uk/~pszgmh/pih.html


Logistics: learning

Lectures
• 10 lectures
• Split into small(ish) pieces
• Learning outcomes on slides
• Typically start with brief recap at start of each lectures

Practicals / homework
• As well as theoretical aspects, programming requires practice
• Although not compulsory, the formative practical sessions are
important: do attend

• via Zoom (see ULTRA/course website for details).

COMP2221—Session 1: Introduction 10

w
thisweek In penalhybrid for next

week



Logistics: assessment

Assessment

• By exam (no coursework)
• knowledge and comprehension: how do things work in Haskell,
why do they work, …

• application: what does some code do; can you write code to
solve problem X…

• evaluation: what are the concepts; what properties does some
solution have…

• Past papers available: last year’s paper is a good guide, a
sample paper will also be available.

COMP2221—Session 1: Introduction 11

open book in summer



Style of teaching

• Combination of slides and live coding
• Focus on theoretical underpinnings and concepts applied to
design of software

) help to understand where Haskell ideas are adopted elsewhere.
• Not much focus on algorithmic complexity (not all non-CS
students have seen it)) focus on elegant code instead.

Feedback/questions
• Discussion forum: https:
//github.com/wenceorg/comp2221/discussions

• Happy to take them in live sessions
• Feedback form (anonymous submission allowed, but please do
not abuse): see course webpage.

COMP2221—Session 1: Introduction 12

https://github.com/wenceorg/comp2221/discussions
https://github.com/wenceorg/comp2221/discussions


Why programming languages?



Abstracting from the machine

Pseudo machine-code

b = a+ 3
mov addr_a, reg1 ## Load address of a into a reg1
add 3, reg1, reg2 ## add 3 to reg1 and write into reg2
mov reg2, addr_b ## write reg2 to address of b.

Good enough in the 1950s

3 Explicit about what is going on
7 Obfuscates algorithm from implementation
7 Not portable
7 Not easy to modify
7 Not succint

COMP2221—Session 1: Introduction 13



Programming languages

• Allow writing code to an abstract machine model
• A translator of some kind (perhaps a compiler) transforms this
code into something that executes on some hardware

) sometimes this “hardware” is a virtual machine (e.g. Python)
• Some virtual machines are “hybrid”: they do just-in-time
compilation (e.g. V8 compiler in Chrome)

Algorithm

Interpreter

Machine code
On-the-fly

Compiler

Intermediate code

Interpreter

Machine code
On-the-fly

Once

Compiler

Machine code
Once for each architecture

COMP2221—Session 1: Introduction 14



Programming languages

• Microarchitecture just reads an instruction stream
• Not easy to program complex algorithms in such a “language”. C
is arguably quite close

) use abstractions leading to high level languages
• Features driven by programming paradigm considerations,
domain knowledge, wanting to target particular hardware, …

• Compiler or interpreter maps this language onto machine
instructions

• We therefore need a formal specification of the input
) languages define the syntax and semantics of their input

Functional programming languages don’t map directly onto current
hardware. A Haskell interpreter (or compiler) thus maps from one
paradigm to the other.

COMP2221—Session 1: Introduction 15

imperative

PDP Il assembler that thinsits a program
language



Haskell environment

Development environment

• GHC (Glasgow Haskell Compiler) can be used as an interpreter
ghci and compiler ghc

• Available freely from www.haskell.org/download
• De-facto standard implementation
• Interpreter sufficient for this course

Standard library
• Ease of use of languages often determined by standard library
• Haskell has a large standard library, and is particularly strong
manipulating lists

• We’ll redo some of these things for practice purposes

COMP2221—Session 1: Introduction 16

(null)://(null)www.haskell.org/download


Demo time

COMP2221—Session 1: Introduction 17



One slide example

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs)

| p x = x : filter p xs
| otherwise = filter p xs

• Higher order
• Polymorphic (works for all types a)
• Function defined with recursion and pattern matching

COMP2221—Session 1: Introduction 18

Deficitcar

at
any concrete typeat all



filter a Bool La a

filter takes a predicatefunction
a list of values
and returns a new list of values
satisfying the predicate

Definition via pattern matching
what to do if you see a call
that looks like this

Base case for empty list
filter p E I

Recursive case destru es hit

filter p giggle't
with at least one entry

1 y
new listcreated

Guard

1

i p
selects 41otherwise filter p as
definite
based on



Syntax and semantics

Definition (Syntax)
What are valid sentences (expressions) in a language?

Definition (Semantics)
What do these valid sentences (expressions) mean?

• Syntax prescribed by Haskell language standard
• Semantics of primitive code fragments also defined by standard
• Whole program semantics must be constructed by the reader

Keywords and white space
Certain character sequences have special meaning: keywords.

e.g. (Python) for, in, with, class, ...
White space is used to separate tokens. Some languages make
white space have meaning. Haskell and Python are two such.

COMP2221—Session 1: Introduction 19



Comments

• Semantics of complex code fragments is given implicitly: you
have to reconstruct it

• Code has to be written correctly for computers
• We can think about how to write it for humans to understand
things

• Comments (or literate programming) can help

-- Compute the factorial of an integer
fac :: Int -> Int
{- Base case: 0! = 1

Recursive case: n! = n (n-1)! -}
fac 0 = 1
fac n = n * fac (n - 1)

COMP2221—Session 1: Introduction 20



Building block summary

• Prerequisites: none
• Content

• Defined syntax and semantics
• Classified translation of language to executable into interpreted and
compiled

• Familiarity with Haskell whitespace/layout rules
• Seen function application
• Seen how to write comments
• Seen how to run scripts

• Expected learning outcomes
• student knows definition of interpreting and compiling a programming
language

• student can explain difference between syntax and semantics
• student can explain whitespace rules in Haskell
• student can use the Haskell interpreter to run small toy problems.

• Self-study
• Work through the Lec01.hs live code to check you understand things.

COMP2221—Session 1: Introduction 21


