AR
W Durham

University

Session 1: Introduction

COMP2221: Functional programming

Lawrence Mitchell’ +l&& k‘(/((

“lawrence.mitchell@durham.ac.uk

COMP2221—Session 1: Introduction

- Functional programming: what is it?
- Course philosophy & organisation
- Why do we want programming languages anyway?

- Some taster examples

First practicals start this week. Problem sheets are hosted on the
course webpage at https://teaching.wence.uk/comp2221.

COMP2221—Session 1: Introduction

https://teaching.wence.uk/comp2221

A simple example, computing n!

Imperative style 1A($$ q ngu*

factorial = 1 ((W
for i in range(1l, n+1): <=<_ M (m‘?

factorial = factorial =* i «—'

Functional style .
Ao s

Fn:{1 n= 7/4

nfF,_, otherwise

o
def factorial(n): NO GL:‘(%O”'L.

if n == 1:

N
return 1 (A ‘H.IS -

else: A' I\r
return n * factorial(n-1) a? (M

Which implementation maps more naturally onto a cowt?‘r;‘ §
J

Which implementation is more convenient for the\[Frogrammer?

Bk At
COMP2221—Session 1: Introduction 3

What is a functional language?

As with most things, there are multiple opinions on precise
definitions but broadly:

- A stgle of programming where the building block of computation
Is application of functions to arguments;

————————0

= a functional language is one that supports and encourages
programming in this style.

But isn't every programming language about functions and applying
them to arguments?

COMP2221—Session 1: Introduction

Side effects

Definition (Side effect)
Modify some (internal/hidden) state as well as returning a value

Will yl == y27?

How could it not?

COMP2221—Session 1: Introduction 5

Side effects

Definition (Side effect)

Modify some (internal/hidden) state as well as returning a value

yl = f(1)
y2 = (1)
Will yl == y27?

How could it not? /7

If £ has some internal state that affects the answer: M

state = 0

def f(n):

(1>globa1 state
state += 1

return n + state

print(f(1)) => "2"
print(f(1)) => "3"

COMP2221—Session 1: Introduction

!

A functional approach

- Forbid variable assignment and side effects in the language.
“Pure functional”

v Makes reasoning about code simpler (for humans and
compilers).

X A new programming paradigm: takes some time to get used to.

Why not C/%/Python?

v Itis possible to write in a functional style in these languages...
X but the language does not enforce it.

X Moreover, the language-level support is weak

v In contrast, Haskell is a purely functional (side effects not
allowed!), and built from scratch for functional programmmg

v sk (a~ A~
. rccm Jf}(lc»>a€v @ o

COMP2221—Session 1: Introduction 6

Goals of this course

- Understand Haskell and functional applications and write your
own code.

= practice via practicals

- Provide academic background: revealing underlying
programming paradigms

- Discuss pros and cons of the functional style (performance,
correctness, ease of implementation, ...) in different application
scenarios.

- Talk about how functional style is useful in software engineering.

- Link into related areas such as equational reasoning, automated
proof systems, and parallel programming.

COMP2221—Session 1: Introduction 7

Building block summary

- Prerequisites: none
- Content
- Look at toy problem from both a functional and imperative point
of view
- Define some basic terms; functional style, side effects, functional
programming language
- Expected learning outcomes
- student knows the definition of functional programming and side
effects
- student can explain side effects with some examples

- student can apply definition of side effects to determine if some
code fragment is side effectful

COMP2221—Session 1: Introduction 8

Underlying book

- Course follows (first half of) Graham Hutton's Haskell book,
Programming in Haskell (2016)

- Slides for the first 10 chapters are available at
http://www.cs.nott.ac.uk/~pszgmh/pih.html

- Course will make links with other material/programming
languages (C#/C/Python) = seen in other submodules

COMP2221—Session 1: Introduction 9

http://www.cs.nott.ac.uk/~pszgmh/pih.html

Logistics: learning

Lectures

- 10 lectures

- Split into small(ish) pieces

- Learning outcomes on slides

- Typically start with brief recap at start of each lectures

Practicals / homework

- As well as theoretical aspects, programming requires practice

- Although not compulsory, the formative practical sessions are
Important: do attend

- via Zoom (see ULTRA/course website for details).
KN\) M‘- ln ?Qﬂm—/ l\jlﬂ\?(d‘w~ ~ex F

COMP2221—Session 1: Introduction wa‘t 10

Logistics: assessment

> oT)M baﬂ((~ RN M s,
Assessment
- By exam (no coursework)

- knowledge and comprehension: how do things work in Haskell,
why do they work, ...

- application: what does some code do; can you write code to
solve problem X...

- evaluation: what are the concepts; what properties does some
solution have...

- Past papers available: last year’s paper is a good guide, a
sample paper will also be available.

COMP2221—Session 1: Introduction 11

Style of teaching

- Combination of slides and live coding

- Focus on theoretical underpinnings and concepts applied to
design of software

= help to understand where Haskell ideas are adopted elsewhere.

- Not much focus on algorithmic complexity (not all non-CS
students have seen it) = focus on elegant code instead.

Feedback/questions

- Discussion forum: https:
//github.com/wenceorg/comp2221/discussions

- Happy to take them in live sessions

- Feedback form (anonymous submission allowed, but please do
not abuse): see course webpage.

COMP2221—Session 1: Introduction 12

https://github.com/wenceorg/comp2221/discussions
https://github.com/wenceorg/comp2221/discussions

Why programming languages?

Abstracting from the machine

Pseudo machine-code

b=a+3

mov addr_a, regl ## Load address of a into a regl
add 3, regl, reg2 ## add 3 to regl and write into reg2
mov reg2, addr_b ## write reg2 to address of b.

Good enough in the 1950s

v Explicit about what is going on

X Obfuscates algorithm from implementation
X Not portable

X Not easy to modify

X Not succint

COMP2221—Session 1: Introduction 13

Programming languages

- Allow writing code to an abstract machine model
- A translator of some kind (perhaps a compiler) transforms this
code into something that executes on some hardware
= sometimes this “hardware” is a virtual machine (e.g. Python)
- Some virtual machines are “hybrid”: they do just-in-time
compilation (e.g. V8 compiler in Chrome)

Compiler Compiler Interpreter
Once for each architecture Once On-the-fly
Machine code Intermediate code | |Machine code
Interpreter
On-the-fly

Machine code

COMP2221—Session 1: Introduction 14

Programming languages

| | | | PP
. MlcroarChlteCture JUSt readS an Instruction stream

- Not easy to program complex algorithms in such a “language’. C

is arguably quite close (PD?(I(~sse~ble tll s .

{ (S
= use abstractions leading to high level languages “ l’ D

O
- Features driven by programming paradigm considerations, U S
domain knowledge, wanting to target particular hardware, ...

- Compiler or interpreter maps this language onto machine
instructions

- We therefore need a formal specification of the input

= languages define the syntax and semantics of their input

Functional programming languages don’'t map directly onto current
hardware. A Haskell interpreter (or compiler) thus maps from one
paradigm to the other.

COMP2221—Session 1: Introduction 15

Haskell environment

Development environment

- GHC (Glasgow Haskell Compiler) can be used as an interpreter

ghci and compiler gh
- Available freely from@skell.org/dov@

- De-facto standard implementation

- Interpreter sufficient for this course

Standard library

- Ease of use of languages often determined by standard library

- Haskell has a large standard library, and is particularly strong
manipulating lists

- We'll redo some of these things for practice purposes

COMP2221—Session 1: Introduction 16

(null)://(null)www.haskell.org/download

COMP2221—Session 1: Introduction

Demo time

17

One slide example

e el it

\filter :: (a -> Bool) -> [a] -> [al&_
filter p [] = 1]
filter p (x:xs)

| p X = x : filter p xs
| otherwise = filter p xs
- Higher order P WUN?UAE,: sl

+ Polymorphic (works for all types a) A=y C’W@é—GU. bP°

- Function defined with recursion and pattern matching

COMP2221—Session 1: Introduction 18

flt@ﬁf o CK—%(QGDLS —> E‘*i(—
filkee dkees o predizake Afuechio
o~ \ itk % values
ondh Khans o
g&}\‘sfyt@ e Droteate
vc,e{"(mw VAVN PR CATEIN VV\D\MN(.
(D&qjkik— to M?‘cﬁ g&\,\\? TIVN
Hok 58l ke ché:‘“w
Rese. Cose /@/WJ{S ik
dilter P 1=

2 owse destte ey Wb
CZQ‘ CUSE wJ\’cJ\asZ; Wl wdle ok leost me 2ok Y

Biter p (rrss) s Sk o

cA ,
Q;C?@w; \ P = X rg»x\{‘ﬂr‘i‘) RS
giicjjf | e = /f—;wch XS
N -

Syntax and semantics

Definition (Syntax)
What are valid sentences (expressions) in a language?

Definition (Semantics)
What do these valid sentences (expressions) mean?

- Syntax prescribed by Haskell language standard
- Semantics of primitive code fragments also defined by standard
- Whole program semantics must be constructed by the reader

Keywords and white space
Certain character sequences have special meaning: keywords.

e.g. (Python) for, in, with, class,
White space is used to separate tokens. Some languages make

white space have meaning. Haskell and Python are two such.

COMP2221—Session 1: Introduction 19

Comments

- Semantics of complex code fragments is given implicitly: you
have to reconstruct it

- Code has to be written correctly for computers

- We can think about how to write it for humans to understand
things

- Comments (or literate programming) can help

-- Compute the factorial of an integer
fac :: Int -> Int
{- Base case: 0! =1

Recursive case: n! = n (n-1)! -}
fac 0 = 1
fac n = n * fac (n - 1)

COMP2221—Session 1: Introduction 20

Building block summary

- Prerequisites: none
- Content

- Defined syntax and semantics
- Classified translation of language to executable into interpreted and

compiled
- Familiarity with Haskell whitespace/layout rules
- Seen function application
- Seen how to write comments
- Seen how to run scripts

- Expected learning outcomes

- student knows definition of interpreting and compiling a programming
language
- student can explain difference between syntax and semantics
- student can explain whitespace rules in Haskell
- student can use the Haskell interpreter to run small toy problems.
- Self-study

- Work through the Lec01.hs live code to check you understand things.

COMP2221—Session 1: Introduction 21

