DRl]
W Durham

University

Session 6: Algebraic data types and type
classes

COMP2221: Functional programming

Lawrence Mitchell”

"lawrence.mitchell@durham.ac.uk

COMP2221—Session 6: Algebraic data types and type classes

- Discussed and classified types of recursive functions
- Gave an example of “hidden” complexity in list reversal

- Provided advice on how to approach writing recursive functions
“step by step”

COMP2221—Session 6: Algebraic data types and type classes 2

(i cougrehons s v

Maps and folds

Mk ords Auechy

Higher order functions

- We've seen many functions that are naturally recursive

- We'll now look at higher order functions in the standard library
that capture many of these patterns

Definition (Higher order function)
A function that does at least one of

- take one or more functions as arguments
- returns a function as its result

O~ fia~h PRk
dsk ol 5 (oD

L"‘A JV\”(M (kg A —> b > C

COMP2221—Session 6: Algebraic data types and type classes 3

Higher order functions

- We've seen many functions that are naturally recursive

- We'll now look at higher order functions in the standard library
that capture many of these patterns

Definition (Higher order function)
A function that does at least one of

- take one or more functions as arguments
- returns a function as its result

- Due to currying, every function of more than one argument is

higher-order in Haskell
add :: Num a => a -> a -> a
add x y = x +y

Prelude> :type add 1
Num a => a -> a -- A function!

COMP2221—Session 6: Algebraic data types and type classes 3

Why are they useful?

- Common programming idioms can be written as functions in the
language

- Domain specific languages can be defined with appropriate
collections of higher order functions

- We can use the algebraic properties of higher order functions to
reason about programs = provably correct program
transformations

= useful for domain specific compilers and automated program

wwhg(eneratmn N A\‘P\Mmb (W)

"2
TR V8 Mﬁs?b\\; X (”‘);53 ~ () > o)

COMP2221—Ses$®n 6: Algebraic data types a typec sses ,: = b 4

Higher order functions on lists

IZ7L;rkJ(L_ drs e~ A e,éaa_4ga1g

- Many linear recursive functions on lists can be written using
higher order library functions
g .y . Mo.'P LN~ C(‘/? ,—r)
- map: apply a function to a list

map :: (a -> b) -> [a] -> [b] T,
mp _ [T=T1T — — | E"C"”‘/ L, —-’7

map f xs [f x | x <- xs]

- filter: remove entries from a list ({w“df (5(()) E \/ L]

filter :: (a -> Bool) -> [a] -> [a]
. ‘——h—’-\‘-\

filter _ [] = []

filter p xs = [x | x <- xs, p x]

* any, all, concatMap, takeWhile, dropWhile,

+ For more, see http://hackage.haskell.org/package/base-4.12.
0.0/docs/Prelude.html#g:13

COMP2221—Session 6: Algebraic data types and type classes 5

Function composition

- Often tedious to write brackets and explicit variable names

- Can use function composition to simplify this

(f o 9)(x) =f(g(x))

- Haskell uses the (.) operator
(.) :: (b ->c) ->(a->b) ->(a ->c¢)
f.g=\x->f (g x)

-- example
odd a = not (even a)
odd = not . even -- No need for the a variable

- Useful for writing composition of functions to be passed to
other higher order functions.

- Removes need to write A-expressions
- Called “pointfree” style.

e (x> WSH(evee)y (-]

COMP2221—Session 6: Algebraic data types gnd typa classes L -) 6
On D TVL i {_UCV\) -~

- folds process a data structure in some order and build a return

value
- Haskell provides a number of these in the standard prelude,

with more available in the Data.List module
foldr: right associative fold
Processes list from the front

foldr :: (a -> b ->b) ->b -> [a] -> b
foldr f z [] z
foldr f z (x:xs) x “f° (foldr f z xs)

foldrfz
1/ N 1/f\f
7 N\ /7N
2 /7 N\ /f\f
3 VAN 3 VAR
4 /:\ 4 /f\
5 [5 z
X J

COMP2221—Session 6: Algebraic data types and type classes 7

- folds process a data structure in some order and build a return

value
- Haskell provides a number of these in the standard prelude,

with more available in the Data.List module
foldl: left associative fold
Processes list from the back (implicitly in reverse)

foldl :: (b ->a ->b) ->b -> [a] -> b
foldl f z [] = w
foldl f z (x:xs) foldl f (z “f° x) xs -- tail recursive!

foldl fz

VRN 7N\

COMP2221—Session 6: Algebraic data types and type classes 7

How to think about this

- foldr and foldl are recursive
- Often easier to think of them non-recursively

foldr
Replace (:) by the given function, and [] by given value.

sum [1, 2, 3]

foldr (+) 0 [1, 2, 3]
foldr (+) 0 (1:(2:(3:[1)))
1+ (2+ (3 +0))

6

foldl
Same idea, but associating to the left

sum [1, 2, 3]

foldl (+) o [1, 2, 3]
foldl (+) 0 (1:(2:(3:1[1)))
(((1 +2) +3) +1)

6

COMP2221—Session 6: Algebraic data types and type classes 8

Why would | use them?

- Capture many linear recursive patterns in a clean way

- Can have efficient library implementation = can apply program
optimisations

- Actually apply to all Foldable types, not just lists

- e.g. foldr's type is actually
foldr :: Foldable t => (a -> b ->b) ->b ->t a ->b

- So we can write code for lists and (say) trees identically

Folds are general

- Many library functions on lists are written using folds

product = foldr (%) 1
sum = foldr (+) 0O
maximum = foldrl max

- Practical sheet 4 asks you to define some others

COMP2221—Session 6: Algebraic data types and type classes 9

Which to choose?

foldr

- Generally foldr is the right (ha!) choice
- Works even for infinite lists!
- Note foldr (:) [] == id

- Can terminate early.

foldl

- Usually best to use strict version:

import Data.List
foldl' -- note trailing '

- Doesn’t work on infinite lists (needs to start at the end)
- Use when you want to reverse the list: foldl (flip (:)) [] == reverse

- Can't terminate early.

COMP2221—Session 6: Algebraic data types and type classes 10

Building block summary

- Prerequisites: none
- Content

- Introducted definition of higher order functions

- Saw definition and use of a number of such functions on lists

- Talked about folds and capturing a generic pattern of computation
- Gave examples of why you would prefer them over explicit iteration

- Expected learning outcomes

- student can explain what makes a function higher order

- student can write higher order functions

- student can use folds to realise linear recursive patterns

- student can explain differences between foldr and foldl

- Self-study

- None

COMP2221—Session 6: Algebraic data types and type classes 1

- Saw example higher-order functions on lists

- Now we'll look at even more generic patterns

- ..Implement our own datatypes

- ..and implement these generic patterns for our datatypes.
map :: (a -> b) -> [a] -> [b]

filter :: (a -> Bool) -> [a] -> [a]

takeWhile :: (a -> Bool) -> [a] -> [a]

dropwhile :: (a -> Bool) -> [a] -> [a]
concatMap :: (a -> [b]) -> [a] -> [b]

COMP2221—Session 6: Algebraic data types and type classes

12

fmap a generic map

Prelude> :t fmap

fmap :: Functor f => (a -> b) -> fa ->f b
Prelude> fmap (*2) [1, 2, 3]

[2, 4, 6]

class Functor f where
fmap :: (a ->b) ->fa->fb
- Works on any mappable structure

- Should obey functor laws (will see example later)
fmap id == 1id
fmap (f . g) == (fmap f) . (fmap g)

COMP2221—Session 6: Algebraic data types and type classes 13

- folds process a data structure in some order and build a return
value

- Haskell provides a number of these in the standard prelude,
with more available in the Data.List module

Prelude> :t foldr
foldr :: Foldable t => (a -=> b ->b) ->b ->t a ->b

COMP2221—Session 6: Algebraic data types and type classes 14

Why would | use them?

- Capture many linear recursive patterns in a clean way

- Can have efficient library implementation = can apply program
optimisations

- Actually apply to all Foldable types, not just lists

- e.g. foldr's type is actually
foldr :: Foldable t => (a -> b ->b) ->b ->t a ->b

- So we can write code for lists and (say) trees identically

Folds are general

- Many library functions on lists are written using folds

product = foldr (%) 1
sum = foldr (+) 0O
maximum = foldrl max

- Practical sheet 4 asks you to define some others

COMP2221—Session 6: Algebraic data types and type classes 15

Which to choose?

foldr

- Generally foldr is the right (ha!) choice
- Works even for infinite lists!
- Note foldr (:) [] == id

- Can terminate early.

foldl

- Usually best to use strict version:

import Data.List
foldl' -- note trailing '

- Doesn’t work on infinite lists (needs to start at the end)
- Use when you want to reverse the list: foldl (flip (:)) [] == reverse

- Can't terminate early.

COMP2221—Session 6: Algebraic data types and type classes 16

Adding new data types

Defining data types

- It often makes sense to define new data types

- Multiple reasons to do this:

1. Hide complexity
2. Build new abstractions
3. Type safety

- Haskell has three ways to do this

- type
- data
- newtype (we won't cover this one)

COMP2221—Session 6: Algebraic data types and type classes 17

Type declarations: new names, old types

- A new name for an existing type can be defined using a type
declaration
String as a synonym for the type [Char]

type String = [Char]

vowels :: String -> [Char]

vowels str = [s | s <- str, s “elem” ['a', 'e', "i', 'o', 'u'll
Prelude> vowels "word"

lloll

Prelude> vowels ['w', 'o', 'r', 'd']

lloll

- Notice that there is no type distinction: objects of type String
and [char] are completely interchangeable.

COMP2221—Session 6: Algebraic data types and type classes 18

New names, old types Il

- We can use these type declarations to make the semantics of
our code clearer

An integer position in 2D
type Pos = (Int, Int)

origin :: Pos
origin = (0, 0)

left :: Pos -> Pos
left (i, j) = (i - 1, j)

- Reader has to expend less brain power to understand the
function

- Similarto C's typedef

COMP2221—Session 6: Algebraic data types and type classes 19

New names, old types Il

- Just like function definitions, type declarations can be
parameterised over type variables

Example

type Pair a = (a, a)

mult :: Pair Int -> Int
mult (m, n) = m*n

dup :: a -> Pair a

dup x = (x, x)

X Can’t use class constraints in the definition
X Can't have recursive types

Not allowed

Prelude> type Tree = (Int, [Tree])

error:
Cycle in type synonym declarations:

COMP2221—Session 6: Algebraic data types and type classes 20

Data declarations: new types

- We can introduce a completely new type by specifying allowed
values using a data declaration

A boolean type

data Bool = False | True

“Bool Is a new type, with two new values: False, and True”

- The two values are called constructors for the type Bool

- Both the type name, and the constructor names, must begin
with an upper-case letter.

- This is actually the way Bool is implemented in the standard
library

COMP2221—Session 6: Algebraic data types and type classes 21

Using new types

- Once defined, we can use new types exactly like built in ones

Example

data IsTrue = Yes | No | Perhaps

negate :: IsTrue -> IsTrue

-- Pattern matching on constructors
negate Yes = No

negate No = Yes

negate Perhaps Perhaps

Prelude> negate Perhaps
Perhaps

COMP2221—Session 6: Algebraic data types and type classes 22

Data declarations with fixed type parameters

- The constructors in a data declaration can take arbitrarily many
parameters

Example

data Shape = Circle Float | Rectangle Float Float

“A shape Is either a Circle, or a Rectangle. The Circle is defined by
one number, the Rectangle by two”

Pattern matching on the constructors:

area :: Shape -> Float
area (Circle r) = pi * r"2
area (Rectangle x y) = x * vy

COMP2221—Session 6: Algebraic data types and type classes 23

Data declarations with type variables

- We can also make our data declarations polymorphic with
appropriate type variables

Example

data Maybe a = Nothing | Just a

“A Maybe IS either Nothing or else a Just with a value of arbitrary
type”

safehead :: [a] -> Maybe a
safehead [] = Nothing
safehead (x:_) = Just x

COMP2221—Session 6: Algebraic data types and type classes 24

Recursive types

- Data declarations can refer to themselves

Peano numbers

data Nat = Zero | Succ Nat

“Nat is a new type with constructors zero :: Nat and
Succ :: Nat -> Nat”

- This type contains the infinite sequence of values

Zero
Succ Zero
Succ (Succ Zero)

- We could use this to implement a representation of the natural

numbers, and arithmetic

add :: Nat -> Nat -> Nat
add Zero n = n
add (Succ m) n = Succ (add m n)

COMP2221—Session 6: Algebraic data types and type classes 25

Recursive types Il

- This kind of recursive type allows very succint definitions of data
structures

Linked list

data List a = Empty | Cons a (List a)
intList = Cons 1 (Cons 2 (Cons 3 Empty))
== [1, 2, 3]

“A List Is either Empty, or a Cons of a value and a List”

Linked list in C

typedef struct _Link =Link;
struct _Link {

void *data;

Link next;

}

COMP2221—Session 6: Algebraic data types and type classes 26

A binary tree

A binary tree with values at nodes

data BTree a = Empty | Node a (BTree a) (BTree a)
btree = Node 1 (Node 2 (Node 3 Empty Empty)
(Node 4 Empty Empty))
(Node 5 Empty Empty)

“A BTree is either Empty, or a Node containing a value and two
BTrees”

COMP2221—Session 6: Algebraic data types and type classes 27

Pattern matching

- Recall the pattern matching syntax on lists

list = [1, 2, 3, 4] == 1:[2, 3, &]
-- Binds tip to 1, rest to [2, 3, 4]
(tip:rest) = list

- The pattern matches the “constructor” of the list, as if the

declaration were
data [] a =[] | a : [a]

- Exactly the same pattern matching applies to data types on their

data constructors

data List a = Empty | Cons a (List a)

list = Cons 1 (Cons 2 (Cons 3 Empty))

-- Binds tip to 1, rest to (Cons 2 (Cons 3 Empty))
(Cons tip rest) = list

COMP2221—Session 6: Algebraic data types and type classes 28

Some type theory and contrasts

- Haskell's data declarations make Algebraic data types
- This is a type where we specify the “shape” of each element

- The two algebraic operations are “sum” and “product”

Definition (Sum type)
An alternation:

data Foo = A | B

A value of type Foo can either be A or B

Definition (Product type)
A combination:

data Pair = P Int Double

a pair of numbers, an Int and bouble together.

COMP2221—Session 6: Algebraic data types and type classes 29

Other languages: product types

- Almost all languages have product types. They're just “ordered
bags” of things.

- In Python, we can use tuples (or namedtuple), or classes

Python
pair = (1, 2)
X, y = pair

- In C we use structs

C struct
struct Pair { struct Pair p;
int x; p.x = 1;
int y; p.y = 2;
}

- In Java, classes

COMP2221—Session 6: Algebraic data types and type classes 30

Other languages: sum types

- Useful for type safety/compiler warnings: easy to statically
prove that every option is handled

- Less common, although new languages are catching on
(e.g. Rust, Swift)

- In C for integers, you can use an enum

enum Weekdays {
MON, TUE, WED, THU, FRI, SAT, SUN

b
- Not really available properly in Java or Python (you can jump
through hoops)

- https://chadaustin.me/2015/07/sum-types/ is a nice
article with more details

COMP2221—Session 6: Algebraic data types and type classes 31

Haskell types: pros and cons

Classes Algebraic data types

v/ Easy to add new “kinds of X Hard to add new “kinds of
things”: just make a subclass things”: need to add new

X Hard to add new “operation constructor and update all

on existing things” need to functions that use the data
change superclass to add new type
method and potentially v Easy to add new “operation
update all subclasses on existing things”: just write

a new function

COMP2221—Session 6: Algebraic data types and type classes 32

Pros and Cons Il

Adding new things
Just implement a new subclass

class Car(object):

def seats(self): return 4
class MX5(Car):

def seats(self): return 2
Later
class Mini(Car): pass

Have to update data constructor

data Car = MX5
-- Later
data Car = MX5 | Mini

COMP2221—Session 6: Algebraic data types and type classes

Adding new operations
Must update all classes

class Car(object):
def mpg(self): return 25
def seats(self): return 4
class MX5(Car):
def mpg(self): return 30
def seats(self): return 2
class Mini(Car):
def mpg(self): return 40

Just write new functions

seats :: Car -> Int
seats MX5 = 2

seats Mini = 4

mpg :: Car -> Int
mpg MX5 = 30

mpg Mini = 40

33

Building block summary

- Prerequisites: none

- Content

- Saw how to define new types in Haskell

- Introduced type keyword for synonyms
- Introduced data for completely new types, and the introduction of data

constructors
- Saw pattern matching for data constructors
- Contrasted sum and product types, and availability in other languages

- Expected learning outcomes

- student can define their own data types
- student can explain difference between type and data.

- Self-study

- None

COMP2221—Session 6: Algebraic data types and type classes 34

Higher order functions and type
classes again

Separating code and data

- When designing software, a good aim is to hide the
implementation of data structures

- In OO0 based languages we do this with classes and inheritence

- Or with interfaces, which define a contract that a class must

Implement
public interface FooInterface {
public bool isFoo();

}

public class MyClass implements FooInterface {
public bool isFoo() {
return False;

}
}

- |dea is that calling code doesn’t know internals, and only relies
on interface.

- As a result, we can change the implementation, and client code
still works

COMP2221—Session 6: Algebraic data types and type classes 35

Generic higher order functions

- In Haskell we can realise this idea with generic higher order
functions, and type classes

- Last time, we saw some examples of higher order functions for
lists

- For example, imagine we want to add two lists pairwise

-- By hand
addLists _ [] = []
addLists []1 _ = []

addLists (x:xs) (y:ys) = (x + y) : addLists xs ys
-- Better

addLists xs ys = map (uncurry (+)) $ zip xs ys

-- Best

addLists = zipwith (+)

- If we write our own data types, are we reduced to doing
everything “by hand” again?

COMP2221—Session 6: Algebraic data types and type classes 36

No: use type classes

- Recall, Haskell has a concept of type classes

- These describe interfaces that can be used to constrain the
polymorphism of functions to those types satisfying the

interface
Example
- (+) acts on any type, as long as that type implements the Num interface
(+) :: Num a => a -> a -> a
- (<) acts on any type, as long as that type implements the Ord interface
(<) :: 0rd a => a -> a -> Bool

- Haskell comes with many such type classes encapsulating
common patterns

- When we implement our own data types, we can “just”
Implement appropriate instances of these classes

COMP2221—Session 6: Algebraic data types and type classes 37

Nomenclature

WARNING!

The words class and instance are the same as in object-oriented
programming languages, but their meaning is very different.

Definition (Class)

A collection of types that support certain, specified, overloaded
operations called methods.

Definition (Instance)

A concrete type that belongs to a class and provides
Implementations of the required methods.

- Compare: type “a collection of related values”

- This is not like subclassing and inheritance in Java/C++

- Closest to a combination of Java interfaces and generics
- C++ “concepts” (in C++20) are also very similar.

COMP2221—Session 6: Algebraic data types and type classes 38

Let's look at the types of three “maps”

data [] a = [] | a:[a]
map :: (a -> b) -> [a] -> [b]

data BinaryTree a = Leaf a | Node a (BinaryTree a) (BinaryTree a)
bmap :: (a -> b) -> BinaryTree a -> BinaryTree b

data RoseTree a = Leaf a | Node a [RoseTree a]
rmap :: (a -> b) -> RoseTree a -> RoseTree b

Only difference is the type name of the container. This suggests that
we should make a “Container” type class to capture this pattern.

Haskell calls this type class Functor

class Functor c where
fmap :: (a ->b) ->ca->cb

If a type implements the Functor interface, it is defines structure that
we can transform the elements of in a systematic way.

COMP2221—Session 6: Algebraic data types and type classes 39

Attaching implementations to types

Use an instance declaration for the type.

data List a = Nil | Cons a (List a)
deriving (Eq, Show)

instance Functor List where
fmap _ Nil = Nil
fmap f (Cons a tail) = Cons (f a) (fmap f tail)

data BinaryTree a = Leaf a | Node a (BinaryTree a) (BinaryTree a)
deriving (Eq, Show)

instance Functor BinaryTree where

fmap f (Leaf a) = Leaf (f a)
fmap f (Node a 1 r) = Node (f a) (fmap f 1) (fmap f r)

COMP2221—Session 6: Algebraic data types and type classes 40

Generic code

list = Cons 1 (Cons 2 (Cons 4 Nil))
btree = Node 1 (Leaf 2) (Leaf %)
rtree = RNode 1 [RNode 2 [RLeaf 4]]

-- Generic addil
addl :: (Functor c, Num a) => c a -> C a
add1 = fmap (+1)

Prelude> addl 1list

Cons 2 (Cons 3 (Cons 5 Nil))
Prelude> addl btree

Node 2 (Leaf 3) (Leaf 5)
Prelude> addl rtree

RNode 2 [RNode 3 [RLeaf 5]]

COMP2221—Session 6: Algebraic data types and type classes 4

Are all containers Functors?

- It seems like any type that takes a parameter might be a Functor
- This is not necessarily the case, we require more than just
type-correctness

-- A type describing functions from a type to itself
data Fun a = MakeFunction (a -> a)

instance Functor Fun where
fmap f (MakeFunction g) = MakeFunction id

This code type-checks id :: a -> a but does not obey the Functor
laws

1. fmap id ¢ == ¢ Mapping the identity function over a structure
should return the structure untouched.

2. fmap f (fmap g c) == fmap (f . g) c Mapping over a container
should distribute over function composition (since the structure
Is unchanged, it shouldn’t matter whether we do this in two
passes or one).

COMP2221—Session 6: Algebraic data types and type classes

42

How many definitions?

- If come up with a definition of fmap for a type, might there have
been another one?

- No! if you can confirm that the functor laws hold
fmap id == id
fmap (f . g) == fmap f . fmap ¢

- then you must have written the right thing!

COMP2221—Session 6: Algebraic data types and type classes 43

Correctness of L1stMap

data List a = Nil | Cons a (List a) deriving (Eq, Show)

instance Functor List where
fmap _ Nil = Nil
fmap f (Cons x xs) = Cons (f x) (fmap f xs)

To show fmap id == id, need to show
fmap id (Cons x xs) == Cons x xs for any x, Xs.

-- Induction hypothesis
fmap id xs = xs
-- Base case
-- apply definition
fmap id Nil = Nil
-- Inductive case
fmap id (Cons x xs) = Cons (id x) (fmap id xs)
== Cons x (fmap id xs)
== Cons X Xs -- Done!

Exercise: do the same for the second law.

COMP2221—Session 6: Algebraic data types and type classes Lty

Foldable data structures

- A data type implementing Functor allows us to take a container
of a’s and turn it into a container of b’s given a function
f ::a->b

- Foldable provides a further interface: if | can combine an a and

a b to produce a new b, then, given a start value and a container
ofaslcanturnitintoab
class Foldable f where

-- minimal definition requires this
foldr :: (a -=>b ->b) ->b ->fa->b

COMP2221—Session 6: Algebraic data types and type classes 45

Interfaces hide implementation details

- Haskell has many type classes in the standard library:
- Num: numeric types
- Eq: equality types
- Ord: orderable types
- Functor: mappable types
- Foldable: foldable types

- If you implement a new data type, it is worthwhile thinking if it
satisfies any of these interfaces

Rationale

- “abstract” interfaces hide implementation details, and permit
generic code

- This is generally good practice when writing software
- (I think) the Haskell approach is quite elegant.

COMP2221—Session 6: Algebraic data types and type classes

46

Building block summary

- Prerequisites: none
- Content

- Motivated writing higher order functions for custom data types

- Recapitulated, and showed more examples, of type classes

- Saw how implementing type class instances for our data types can make
code agnostic to the data structure implementation

- Saw Functor and Foldab'le type classes, and how they can be used to
make new data types behave like builtin ones

- Expected learning outcomes

- student can implement type class instances for new data types
- student can describe some advantages of this approach

- Self-study

- (Very optional) Chapters 12 & 14 of Hutton's Programming in Haskell are an

’ i

excellent introduction to more of Haskell's “key” type classes

COMP2221—Session 6: Algebraic data types and type classes 47

