AB
W Durham

University

Session 3: Types and classes ||

COMP2221: Functional programming

Lawrence Mitchell”

"lawrence.mitchell@durham.ac.uk

COMP2221—Session 3: Types and classes |l

- |dea that variables, and functions have types

- Saw some basic Haskell types

* Bool

- Int, Integer, Float

* Char

- tuples (a, b, c) and lists [a]
- Discussed currying of functions.

-- "uncurried"
add' :: (Int, Int) -> Int
add' (x, y) = x + vy

-- "curried" a4 ?abmﬂitj
add'' :: Int ->(Int -> Int) ‘ 4j
add'' xy = x vy @ﬂ1@‘¢f7’ -

COMP2221—Session 3: Types and classes |l 2

Currying conventions (reminder)

- (Almost) all functions in Haskell are written in curried form

= To avoid messy syntax, this leads to associativity rules for -> and

\‘\}‘V %iunctio’napplication. rf')u"\,,‘l rfJ\fwM

~Ar
0‘\>associates to the right

Int -> Int -> Int -> Int
-- Means
Int -> (Int -> (Int -> Int))

Function application associates to the left

mult x y z MM\“')& 2 ak —%(fn"")‘u.l->

-- Means

((mult x) y) 2 (mwlb Ry Wb =k
S Y

COMP2221—Session 3: Types and classes |l

Type inference

- Any type declaration you write will be checked by the type
inference engine. Error if incorrect

foo :: Int -> Bool (+)Z$ N‘A”\ AD O DA P LN
f = + 3
e(:'go)r(': " C“') ‘. "‘L _’ ,hl' > (ot

- Couldn't match expected type "Bool' with actual type " Int'
- In the expression: x + 3
In an equation for "foo': foo x = x + 3

Ryl . T+ 3 = 4
\Zt—(’l’rm\"l'- A+ (.S
COMP2221—Session 3: Types and classes |l (F L)‘w“(..gM /’ > + l S' 4

Type inference |l

Recommendation
Reasoning about types is a core part of understanding (and writing)

Haskell code. Chnr mvs\(LW?

= always decorate function definitions with their type.

Syntax conventions

- Function application is so important that it is written as quietly
as possible: with whitespace

- All functions can be called in prefix form:
“foo a b”, not “a foo b”

- ...but, special syntax for binary functions.

COMP2221—Session 3: Types and classes |l 5

Binary functions: infix notation

Infix notation

All binary functions (which have type a -> b -> c¢) can be written
as Infix functions.

Symbol only names
Names consisting only of symbols (e.g. +, =)

1+ 2 -- 1nfix notation
(+) 1 2 -- prefix notation
False && True -- 1nfix notation
(6&5) False True -- prefix notation

“Normal” names
Names with alpha-numeric characters (e.g. div, mod)

mod 3 2 -- prefix notation
3 'mod” 2 -- infix notation using backticks

COMP2221—Session 3: Types and classes |l 6

- Functions defined by “equations” that match patterns:
head' [] =[]
head' (x:xs) = X
“Where-ever you see head' [] replace it with [1”
- No side effects = substitution is always safe/correct.
- Patterns are tried textually in order down the page.
- Guards can be used to constrain when equations can match

signum n | n > 0 =1 f«‘-mgu(&(.

| n == =0
| otherwise = -1
Guard can be any expression that evaluates to a Bool value.
Compare
(1 X >0

S(x)=4¢0 x=0
Gl otherwise

COMP2221—Session 3: Types and classes |l 7

Building block summary

- Prerequisites: none
- Content

- Defining functions as “equations”

- Pattern matching in equations

- Guards and conditional expressions

- Special syntax for infix notation (binary functions)

- Expected learning outcomes

- student can write functions using conditional expressions and guard
expressions
- student understands order in which patterns are tried in matching

- Self-study

- None

COMP2221—Session 3: Types and classes |l 8

Polymorphism

Polymorphism

- Recall, Haskell is strictly typed.
- What does this mean for (say) length?

Different types?
length [True, False, True] -- :: [Bool] -> Int ?
length [1, 2, 3] -- :: [Int] -> Int ?

These functions must have different types, no?

COMP2221—Session 3: Types and classes |l 9

Polymorphism

- Recall, Haskell is strictly typed.
- What does this mean for (say) length?

Different types?
length [True, False, True] -- :: [Bool] -> Int ?
length [1, 2, 3] —= :: [Int] -> Int ?

These functions must have different types, no?

Polymorphic types

Prelude> :type length
length :: [a] -> Int

“length eats a list of values of any type a and returns an Int”
a Is called a type variable.

This is called parametric polymorphism.

COMP2221—Session 3: Types and classes |l 9

Contrast with OO languages: defintions

Definition (Parametric polymorphism)
Write a single implementation of a function that applies generically
and identically to values of any type.

Definition (“ad-hoc” polymorphism)
Write multiple implementations of a function, one for each type
you wish to support.

Definition (Subtype polymorphism)
Relate datatypes by some “substitutability”. Write a function for a
supertype instance. Now all subtypes can use it.

“Duck typing” or “Liskov substitution principle”.

COMP2221—Session 3: Types and classes |l 10

Contrast with OO languages: examples

Subtype polymorphism Ad-hoc polymorphism
class Foo(object): class Foo(object):
def length(self, ...): pass
pass class Bar(object):
class Bar(Foo): pass
pass def length(obj):
a = Foo().length() if isinstance(obj, Foo):
Every Bar is-a Foo, so we can ce
call the length method. elif isinstance(obj, Bar):

b = Bar().length() ce
length knows how to handle things
of type Foo and type Bar
length(Foo())

length(Bar())

T B R

Parametric polymorphism

-- length doesn't care what type the entries
-- 1n the list are

length :: [a] -> Int

length [] = ©

length (_:xs) = 1 + length xs

COMP2221—Session 3: Types and classes |l 1

Contrast with OO languages

- Parametric polymorphism also called generic programming
- Introduced in ML in 1975.

- Has been adopted by a number of languages, including
traditional OO ones.

- For example, Java or C# have “generics” for this purpose

// Implementation of HashSet is generic

// Specialised on instantiation

Set<int> intset = new HashSet<int>();
Set<Object> objset = new HashSet<Object>();

- C++ templates also allow for similar style of programming

COMP2221—Session 3: Types and classes |l 12

Constraining polymorphic functions

- Some polymorphic functions only apply to types that satisfy
certain constraints

- For example (+) works on all types a, as long as that type is a
number type.

Example
(+) :2 Numa =>a -> a -> a

“For any type a that is an instance of the class Num of numeric
types, (+) hastypea -> a -> a”

- This constraint is called a class constraint

- An expression or type with one or more such constraints is
called overloaded.

= Num a => a -> a -> a IS an overloaded type and (+) is an
overloaded function.

COMP2221—Session 3: Types and classes |l 13

Haskell classes

WARNING!

The words class and instance are the same as in object-oriented
programming languages, but their meaning is very different.

Definition (Class)

A collection of types that support certain, specified, overloaded
operations called methods.

Definition (Instance)

A concrete type that belongs to a class and provides
Implementations of the required methods.

- Compare: type “a collection of related values”

- This is not like subclassing and inheritance in Java/C++

- Closest to a combination of Java interfaces and generics
- C++ “concepts” (in C++20) are also very similar.

COMP2221—Session 3: Types and classes |l 14

Defining classes |

- Let us say we want to encapsulate some new property of types
Foo-Ness
- We define the interface the type should support

class Foo a where
isfoo :: a -> Bool

- Now we say how types implement this

instance Foo Int where
isfoo _ = False

instance Foo Char where
isfoo ¢ = ¢ “elem” ['a'..'c']

- Can add new interfaces to old types, and new types to old
Interfaces.

- Contrast Java, where if | implement a new interface it is very
difficult to make existing classes implement it.

COMP2221—Session 3: Types and classes |l 15

Defining classes Il

- Classes (interfaces) can provide default implementation.

- Example, the Eq class representing equality requires both (==
and (/=).

- Since a == b < not (a /= b), we can provide default
Implementations and only require that an instance implements

one.
class Eq a where
(==) :: a -> a -> Bool
X ==y = not (x /=vy)

(/=) :: a -> a -> Bool
/=y = not (x ==vy)

x

-- instance for MyType only needs to provide one of (==) or (/=).
instance Eq MyType where
X ==y = ...

COMP2221—Session 3: Types and classes |l 16

Building block summary

- Prerequisites: none
- Content

- Looked at Haskell classes in the context of overloaded functions
- Looked at generic programming (polymorphism) in Haskell

- Defined overloading in terms of constrained polymorphism

- Looked at constrained polymorphism and class constraints.

- Expected learning outcomes

- student knows definition of generic programming and overloading as
applied in Haskell

- student can write simple polymorphic code in Haskell

- student understands some differences between Haskell-style overloading,
and Java-style subclassing

- Self-study

- (Optional, but interesting). Wadler & Blott, How to make ad-hoc
polymorphism less ad hoc, POPL (1989). https://people.csail.mit.
edu/dnj/teaching/6898/papers/wadler88.pdf

- (Optional, probably the first 45 minutes only?). Simon Peyton-Jones on type
classes https://www.youtube.com/watch?v=6COvD8oynmI.

COMP2221—Session 3: Types and classes |l 17

