AB
W Durham

University

Session 1: Introduction

COMP2221: Functional programming

Lawrence Mitchell’ /J/(u ke/‘/l-

"lawrence.mitchell@durham.ac.uk

COMP2221—Session 1: Introduction

- Functional programming: what is it?
- Course philosophy & organisation
- Why do we want programming languages anyway?

- Some taster examples

First practicals start in week 2. Problem sheets are hosted on the
course webpage at https://teaching.wence.uk/comp2221.

COMP2221—Session 1: Introduction

A simple example, computing n!
Imperative style k j
factorial = 16—
for 1 in range(l, n+l):

factorial = factorlal * 1 rcﬁss’lﬂ"\-

Functional style

otherwise \ 6 Kl
if n == 1:

F: N =N
return 1 '\
elsi;turn n = factorial(n-1) CJ\(z) '—ﬁ L

Which implementation maps more naturally onto a computer?

n—1

def factorial(n):

Which implementation is more convenient for the programmer?

COMP2221—Session 1: Introduction 3

What is a functional language?

As with most things, there are multiple opinions on precise
definitions but broadly:

- A style of programming where the building block of computation
Is application of functions to arguments;

= a functional language is one that supports and encourages
programming in this style.

But isn't every programming language about functions and applying
them to arguments?

COMP2221—Session 1: Introduction

Side effects

Definition (Side effect)
Modify some (internal/hidden) state as well as returning a value

wMj‘qAWW

Will yl == y27? 32)

How could it not?

COMP2221—Session 1: Introduction 5

Side effects

Definition (Side effect)
Modify some (internal/hidden) state as well as returning a value

yl = f(1) (Dd—q:;uu"’ ‘“ NOA SN~

y2 = f(1)
Willyl == y2? NOW L TWM

How could it not?

If f has some internal state that affects the answer:

state = 0

def f(n):
global state
state += 1

return n + state

print(£(1)) - 2" 4—0 ::ﬁ‘) dmo}
print(£(1)) => "3 2 pure " Lol la«:‘ Ir
5

COMP2221—Session 1: Introduction

A functional approach

- Forbid variable assignment and side effects in the language.

“Pure functional” r&ef—M\aL {ﬂ\ﬂ; a\rcwvj

v Makes reasoning about code simpler (for humans and
compilers).

X A new programming paradigm: takes some time to get used to.

Why not C/@/Python? / KJ:\"‘—S a("‘pl—ﬁ,

v Itis possible to write in a functional style in these languages...
X but the language does not enforce it.

X Moreover, the language-level support is weak

v In contrast, Haskell is a purely functional (side effects not
allowed!), and built from scratch for functional programming

,r‘ 2 \ z ﬁnﬂ/l' (M ‘F P s' (N
COMP2221 Se55|on1 Intrord(uonn) %509’ r_f:dt/ l"“js m O 6
dnnedAs a2 pB.

Goals of this course

- Understand Haskell and functional applications and write your
own code.

= practice via practicals

- Provide academic background: revealing underlying
programming paradigms

- Discuss pros and cons of the functional style (performance,
correctness, ease of implementation, ...) in different application
scenarios.

- Link into related areas such as equational reasoning, automated
proof systems, and parallel programming.

COMP2221—Session 1: Introduction 7

Building block summary

- Prerequisites: none

- Content

- Look at toy problem from both a functional and imperative point
of view
- Define some basic terms; functional style, side effects, functional
programming language
- Expected learning outcomes

- student knows the definition of functional programming and side
effects

- student can explain side effects with some examples

- student can apply definition of side effects to determine if some
code fragment is side effectful

COMP2221—Session 1: Introduction 8

Underlying book

- Course follows (first half of) Graham Hutton’s Haskell book,
Programming in Haskell (2016)

- Slides for the first 10 chapters are available at
http://www.cs.nott.ac.uk/~pszgmh/pih.html

- Sometimes, we'll use them directly
- Sometimes, I'll ask you to look through them in your own time

- Course will make links with other material/programming
languages (Java/C/Python) = seen in other submodules

COMP2221—Session 1: Introduction 9

Logistics: learning

Lectures

- 10 lectures

- Split into small(ish) pieces

- Learning outcomes on slides

- Typically start with brief recap at start of each lectures

Practicals / homework

- As well as theoretical aspects, programming requires practice

- Although not compulsory, the formative practical sessions are
Important: do attend

- via Zoom (see DUO for details).

COMP2221—Session 1: Introduction 10

Logistics: assessment

Assessment

- By exam (no coursework)

- knowledge and comprehension: how do things work in Haskell,
why do they work, ...

- application: what does some code do; can you write code to
solve problem X...

- evaluation: what are the concepts; what properties does some
solution have...

- Past papers available: some changes from previous years due to
online aspect this year. I'll make a sample paper available too.

- We will go through one such paper in a term 3 revision lecture

COMP2221—Session 1: Introduction 1

Changes from last year

- More exposition on type classes, especially as a way of defining
abstract interfaces.
= reaction to feedback from last year’s cohort
- A little more focus on theoretical underpinnings and
compilation of abstractions to machine code.
= help to understand where Haskell ideas are adopted elsewhere.
- Not much focus on algorithmic complexity (not all non-CS
students have seen it) = focus on elegant code instead.

Feedback/questions

- Discussion forum: https:
//github.com/wenceorg/comp2221/discussions

- Happy to take them in live sessions

- Feedback form (anonymous submission allowed, but please do
not abuse): see course webpage.

COMP2221—Session 1: Introduction 12

Why programming languages?

Abstracting from the machine

Pseudo machine-code

b=a+3

mov addr_a, regl ## Load address of a into a regl
add 3, regl, reg2 ## add 3 to regl and write into reg?
mov reg2, addr_b ## write reg2 to address of b.

Good enough in the 1950s

v Explicit about what is going on

X Obfuscates algorithm from implementation
X Not portable

X Not easy to modify

X Not succint

COMP2221—Session 1: Introduction 13

Programming languages

- Allow writing code to an abstract machine model
- A translator of some kind (perhaps a compiler) transforms this
code into something that executes on some hardware
= sometimes this “hardware” is a virtual machine (e.g. Python)
- Some virtual machines are “hybrid”: they do just-in-time
compilation (e.g. V8 compiler)

Compiler

Once for each architecture

Machine code

COMP2221—Session 1: Introduction

Compiler Interpreter
Once On-the-fly

Intermediate code Machine code

Interpreter
On-the-fly

Machine code

14

Programming languages

- Microarchitecture just reads an instruction stream

- Not easy to program complex algorithms in such a “language”. C
Is arguably quite close

= use abstractions leading to high level languages

- Features driven by programming paradigm considerations,
domain knowledge, wanting to target particular hardware, ...

- Compiler or interpreter maps this language onto machine
instructions

- We therefore need a formal specification of the input

= languages define the syntax and semantics of their input

Functional programming languages don't map directly onto current
hardware. A Haskell interpreter (or compiler) thus maps from one
paradigm to the other.

COMP2221—Session 1: Introduction 15

Haskell environment

Development environment

- GHC (Glasgow Haskell Compiler) can be used as an interpreter
ghci and compiler ghc

- Available freely from www.haskell.org/platform
- De-facto standard implementation

- Interpreter sufficient for this course

Standard library

- Ease of use of languages often determined by standard library

- Haskell has a large standard library, and is particularly strong
manipulating lists

- We'll redo some of these things for practice purposes

COMP2221—Session 1: Introduction 16

One slide example

filter :: (a -> Bool) -> [a] -> [a]
filter p [1 = []
filter p (x:xs)

| p X
| otherwise

x : filter p xs
filter p xs

- Higher order
- Polymorphic (works for all types a)

- Function defined with recursion and pattern matching

COMP2221—Session 1: Introduction 17

Syntax and semantics

Definition (Syntax)
What are valid sentences (expressions) in a language?

Definition (Semantics)
What do these valid sentences (expressions) mean?

- Syntax prescribed by Haskell language standard
- Semantics of primitive code fragments also defined by standard
- Whole program semantics must be constructed by the reader

Keywords and white space
Certain character sequences have special meaning: keywords.

e.g. (Python) for, in, with, class,
White space is used to separate tokens. Some languages make

white space have meaning. Haskell and Python are two such.

COMP2221—Session 1: Introduction 18

PROGRAMMING IN HASKELL

Chapter 2 - First Steps

Starting GHCi

The interpreter can be started from the terminal
command prompt $ by simply typing ghci:

$ ghci
GHCi, version X: http://www.haskell.org/ghc/ :? for help

Prelude>

The GHCi prompt > means that the interpreter is
now ready to evaluate an expression.

For example, it can be used as a desktop calculator
to evaluate simple numeric expresions:

> 2+3%4
14

> (2+3)*4
20

> sqrt (3A2 + 4A2)
5.0

Haskell Scripts

As well as the functions in the standard library,
you can also define your own functions;

I New functions are defined within a script, a text
file comprising a sequence of definitions;

I By convention, Haskell scripts usually have a .hs
suffix on their filename. This is not mandatory,
but is useful for identification purposes.

My First Script

When developing a Haskell script, it is useful to
keep two windows open, one running an editor
for the script, and the other running GHCi.

Start an editor, type in the following two function
definitions, and save the script as test.hs:

double x = x + X

quadruple x = double (double x)

Leaving the editor open, in another window start
up GHCi with the new script:

$ ghci test.hs

Now both the standard library and the file test.hs
are loaded, and functions from both can be used:

> quadruple 10
40

> take (double 2) [1,2,3,4,5,6]
[1,2,3,4]

Naming Requirements

§ Function and argument names must begin with
a lower-case letter. For example:

myFun funl arg_2

By convention, list arguments usually have an s
suffix on their name. For example:

The Layout Rule

In a sequence of definitions, each definition must
begin in precisely the same column:

10

The layout rule avoids the need for explicit syntax
to indicate the grouping of definitions.

ﬁﬁgrouping } [—explﬁgrouping }

Comments

- Semantics of complex code fragments is given implicitly: you
have to reconstruct it

- Code has to be written correctly for computers

- We can think about how to write it for humans to understand
things

- Comments (or literate programming) can help

-- Compute the factorial of an integer
fac :: Int -> Int

{- Base case: 0! =1
Recursive case: n! = n (n-1)! -}
fac 0 = 1

fac n = n » fac (n - 1)

COMP2221—Session 1: Introduction 19

Building block summary

- Prerequisites: none

- Content
- Defined syntax and semantics
- Classified translation of language to executable into interpreted and
compiled
- Familiarity with Haskell whitespace/layout rules
- Seen function application
- Seen how to write comments
- Seen how to run scripts
- Expected learning outcomes
- student knows definition of interpreting and compiling a programming
language
- student can explain difference between syntax and semantics
- student can explain whitespace rules in Haskell
- student can use the Haskell interpreter to run small toy problems.
- Self-study

- Remainder of slides for Chapter 2 (I skipped some)
- Optional: slides for Chapter 1 (historical background)

COMP2221—Session 1: Introduction 20

